DOI QR코드

DOI QR Code

Soft corals collected from Jeju Island inhibits the α-MSH-induced melanogenesis in B16F10 cells through activation of ERK

  • Sanjeewa, K. K. Asanka (Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Park, Young-jin (Department of Family Medicine, College of Medicine, Dong-A University, Dong-A University Medical Center) ;
  • Fernando, I. P. Shanura (Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Ann, Yong-Seok (Choung Ryong Fisheries Co. Ltd) ;
  • Ko, Chang-Ik (Choung Ryong Fisheries Co. Ltd) ;
  • Wang, Lei (Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Jeon, You-Jin (Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University) ;
  • Lee, WonWoo (Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
  • Received : 2018.03.13
  • Accepted : 2018.05.14
  • Published : 2018.09.30

Abstract

In the present study, we first evaluated the melanin inhibitory effect of four crude 70% ethanol extracts separated from soft corals abundantly growing along the seawaters of Jeju Island, South Korea, including Dendronephthya castanea (DC), Dendronephthya gigantea (DG), Dendronephthya puetteri (DP), and Dendronephthya spinulosa (DS). Among the four ethanol extracts, the ethanol extract of DP (DPE) did not possess any cytotoxic effect on B16F10 cells. However, all other three extracts showed a cytotoxic effect. Also, DPE reduced the melanin content and the cellular tyrosinase activity without cytotoxicity, compared to the ${\alpha}-MSH$-stimulated B16F10 cells. Specifically, DPE downregulated the expression levels of tyrosinase and microphthalmia-associated transcription factor by activating the ERK signaling cascade in ${\alpha}-MSH$-stimulated B16F10 cells. Interestingly, the melanin inhibitory effect of DPE was abolished by the co-treatment of PD98059, an ERK inhibitor. According to these results, we suggest that DPE has whitening capacity with the melanin inhibitory effects by activating ERK signaling and could be used as a potential natural melanin inhibitor for cosmeceutical products.

Keywords

References

  1. Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol. 2016;100:6519-43. https://doi.org/10.1007/s00253-016-7647-9
  2. Bae JS, Han M, Yao C, Chung JH. Chaetocin inhibits IBMX-induced melanogenesis in B16F10 mouse melanoma cells through activation of ERK. Chem Biol Interact. 2016;245:66-71. https://doi.org/10.1016/j.cbi.2015.12.021
  3. Boonme P, Junyaprasert VB, Suksawad N, Songkro S. Microemulsions and nanoemulsions: novel vehicles for whitening cosmeceuticals. J Biomed Nanotechnol. 2009;5:373-83. https://doi.org/10.1166/jbn.2009.1046
  4. Chan YY, Kim KH, Cheah SH. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol. 2011;137:1183-8. https://doi.org/10.1016/j.jep.2011.07.050
  5. Ebada SS, Edrada RA, Lin W, Proksch P. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat Protoc. 2008;3:1820-31. https://doi.org/10.1038/nprot.2008.182
  6. Gori A, Linares C, Viladrich N, Clavero A, Orejas C, Fiorillo I, Ambroso S, Gili J-M, Rossi S. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J Exp Mar Biol Ecol. 2013;444:38-45. https://doi.org/10.1016/j.jembe.2013.03.009
  7. Horwitz W, Latimer GW Jr. 2005. Official methods of analysis of AOAC International. 18th ed. Gaithersburg: AOAC International; 2005.
  8. Huang CY, Tseng YJ, Chokkalingam U, Hwang TL, Hsu CH, Dai CF, Sung PJ, Sheu JH. Bioactive isoprenoid-derived natural products from a Dongsha atoll soft coral Sinularia erecta. J Nat Prod. 2016a;79:1339-46. https://doi.org/10.1021/acs.jnatprod.5b01142
  9. Huang HC, Liao CC, Peng CC, Lim JM, Siao JH, Wei CM, Chen CC, Wu CS, Chang TM. Dihydromyricetin from Ampelopsis grossedentata inhibits melanogenesis through down-regulation of MAPK, PKA and PKC signaling pathways. Chem Biol Interact. 2016b;258:166-74. https://doi.org/10.1016/j.cbi.2016.08.023
  10. Hwang YS, Kim YJ, Kim MO, Kang M, Oh SW, Nho YH, Park SH, Lee J. Cannabidiol upregulates melanogenesis through CB1 dependent pathway by activating p38 MAPK and p42/44 MAPK. Chem Biol Interact. 2017;273:107-14. https://doi.org/10.1016/j.cbi.2017.06.005
  11. Kim BH, Park KC, Park JH, Lee CG, Ye SK, Park JY. Inhibition of tyrosinase activity and melanin production by the chalcone derivative 1-(2-cyclohexylmethoxy-6-hydroxy-phenyl)-3-(4-hydroxymethyl-phenyl)-propenone. Biochem Biophys Res Commun. 2016;480:648-54. https://doi.org/10.1016/j.bbrc.2016.10.110
  12. Kim D-S, Jeong Y-M, Park I-K, Hahn H-G, Lee H-K, Kwon S-B, Jeong JH, Yang SJ, Sohn UD, Park K-C. A new 2-imino-1, 3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells. Biol Pharm Bull. 2007;30:180-3. https://doi.org/10.1248/bpb.30.180
  13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  14. Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther. 1996;276:765-9.
  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  16. Nasr Bouzaiene N, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016;144:80-5. https://doi.org/10.1016/j.lfs.2015.11.030
  17. Park HY, Kosmadaki M, Yaar M, Gilchrest BA. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci. 2009;66:1493-506. https://doi.org/10.1007/s00018-009-8703-8
  18. Paslawski P, Migaszewski Z. The quality of element determinations in plant materials by instrumental methods. Pol J Environ Stud. 2006;15:154-64.
  19. Pillaiyar T, Manickam M, Jung SH. Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov Today. 2017;22:282-98. https://doi.org/10.1016/j.drudis.2016.09.016
  20. Rendon MI, Gaviria JI. Review of skin-lightening agents. Dermatol Surg. 2005;31:886-9. discussion 9
  21. Roy PK, Ashimine R, Miyazato H, Taira J, Ueda K. Endoperoxy and hydroperoxy cadinane-type sesquiterpenoids from an Okinawan soft coral, Sinularia sp. Arch Pharm Res. 2016;39:778-84. https://doi.org/10.1007/s12272-016-0759-z
  22. Sanjeewa KKA, Kim EA, Son KT, Jeon YJ. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B. 2016;162:100-5. https://doi.org/10.1016/j.jphotobiol.2016.06.027
  23. Sehgal VN, Verma P, Srivastava G, Aggarwal AK, Verma S. Melasma: treatment strategy. J Cosmet Laser Ther. 2011;13:265-79. https://doi.org/10.3109/14764172.2011.630088
  24. Seo SY, Sharma VK, Sharma N. Mushroom tyrosinase: recent prospects. J Agric Food Chem. 2003;51:2837-53. https://doi.org/10.1021/jf020826f
  25. Steingrimsson E, Moore KJ, Lamoreux ML, Ferre-D'Amare AR, Burley SK, Zimring DCS, Skow LC, Hodgkinson CA, Arnheiter H, Copeland NG. Microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet. 1994;8:257.
  26. Taylor SC. Skin of color: biology, structure, function, and implications for dermatologic disease. J Am Acad Dermatol. 2002;46:S41-62. https://doi.org/10.1067/mjd.2002.120790
  27. Vachtenheim J, Novotna H, Ghanem G. Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. J Invest Dermatol. 2001;117:1505-11. https://doi.org/10.1046/j.0022-202x.2001.01563.x
  28. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006;17:300-12. https://doi.org/10.1016/j.tifs.2005.12.004
  29. Wijesinghe WA, Jeon YJ. Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia. 2012;83:6-12. https://doi.org/10.1016/j.fitote.2011.10.016
  30. Wu SY, Wang HM, Wen YS, Liu W, Li PH, Chiu CC, Chen PC, Huang CY, Sheu JH, Wen ZH. 4-(Phenylsulfanyl)butan-2-one suppresses melanin synthesis and melanosome maturation in vitro and in vivo. Int J Mol Sci. 2015a;16:20240-57. https://doi.org/10.3390/ijms160920240
  31. Wu Y, Wu ZR, Chen P, Yang L, Deng WR, Wang YQ, Li HY. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells. Bioorg Med Chem Lett. 2015b;25:1476-8. https://doi.org/10.1016/j.bmcl.2015.02.028
  32. Xiong Q, Wilson WK, Pang J. The Liebermann-Burchard reaction: sulfonation, desaturation, and rearrangment of cholesterol in acid. Lipids. 2007;42:87-96. https://doi.org/10.1007/s11745-006-3013-5
  33. Yoon W, Kim M, Koh H, Lee W, Lee N, Hyun C. Effect of Korean red sea cucumber (Stichopus japonicus) on melanogenic protein expression in murine B16 melanoma. Int J Pharm. 2010;6:37-42. https://doi.org/10.3923/ijp.2010.37.42

Cited by

  1. Padina boryana, a brown alga from the Maldives: inhibition of α-MSH-stimulated melanogenesis via the activation of ERK in B16F10 cells vol.23, pp.3, 2018, https://doi.org/10.1186/s41240-020-00154-x