DOI QR코드

DOI QR Code

Nutrients and bioactive potentials of edible green and red seaweed in Korea

  • Sanjeewa, K.K. Asanka (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University) ;
  • Lee, WonWoo (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
  • Received : 2017.12.29
  • Accepted : 2018.04.06
  • Published : 2018.07.31

Abstract

Background: Traditionally, East-Asians (Korea, Japan, and China) utilize seaweeds as a food source and ingredient in traditional medicine. Korea is one of the biggest seaweed producer and consumer in the global trade. Especially, side dishes made from seaweeds are very popular in the traditional Korean cuisines. Seaweeds are popular as fresh vegetable salads and soup or eaten as snacks. Main body: Seaweeds are rich in essential nutrients, minerals, and vitamins as well as a promising source of novel bioactive compounds. The compounds (polysaccharides, polyphenols, and sterols) present in the edible Korean seaweeds possess important bioactive properties such as antioxidant, anti-inflammation, anticancer, anti-diabetic, and anticoagulant properties. Thus, the long-term consumption of seaweed has a potential to reduce the risk of cancer, diabetes, obesity, and inflammation-related complications. However, seaweed consumption is limited to the small population around the globe. Thus, it is important to increase the awareness of the health benefits of seaweeds consumption among the general population. Short conclusion: In the present study, we discussed some popular green and red edible Korean seaweeds and their health-promoting properties. This study might be useful to increase the public awareness of the consumption of seaweed as a food source.

Keywords

References

  1. Aguilera-Morales M, Casas-Valdez M, Carrillo-Domi'nguez S, Gonzalez-Acosta B, Perez-Gil F. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. J Food Compost Anal 2005;18:79-88. https://doi.org/10.1016/j.jfca.2003.12.012
  2. Ali I, Manzoor Z, Koh Y-S. 3-Hydroxy-4,7-megastigmadien-9-one, isolated from Ulva pertusa Kjellman, inhibits LPS-induced inflammatory response by downregulating mitogen-activated protein kinase and $NF-{\kappa}B$ pathways. J Bacteriol Virol. 2016;46:167-72. https://doi.org/10.4167/jbv.2016.46.3.167
  3. Ali I, Manzoor Z, Koo JE, Kim JE, Byeon SH, Yoo ES, Kang HK, Hyun JW, Lee NH, Koh YS. 3-Hydroxy-4,7-megastigmadien-9-one, isolated from Ulva pertusa, attenuates TLR9-mediated inflammatory response by down-regulating mitogen-activated protein kinase and NF-kappaB pathways. Pharm Biol. 2017;55:435-40. https://doi.org/10.1080/13880209.2016.1246574
  4. Apiratikul R, Madacha V, Pavasant P. Kinetic and mass transfer analyses of metal biosorption by Caulerpa lentillifera. Desalination. 2011;278:303-11. https://doi.org/10.1016/j.desal.2011.03.092
  5. Athukorala Y, Lee KW, Park EJ, Heo MS, Yeo IK, Lee YD, Jeon YJ. Reduction of lipid peroxidation and $H_{2}O_{2}$-mediated DNA damage by a red alga (Grateloupia filicina) methanolic extract. J Sci Food Agric. 2005;85:2341-8. https://doi.org/10.1002/jsfa.2246
  6. Athukorala Y, Lee KW, Shahidi F, Heu MS, Kim HT, Lee JS, Jeon YJ. Antioxidant efficacy of extracts of an edible red alga (Grateloupia filicina) in linoleic acid and fish oil. J Food Lipids. 2003;10:313-27. https://doi.org/10.1111/j.1745-4522.2003.tb00024.x
  7. Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15-25. https://doi.org/10.1016/j.fct.2012.09.021
  8. Chen S, Wu J, Chen L, Zhu C. Effects of light and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. J Appl Phycol. 2011;23:1045-51. https://doi.org/10.1007/s10811-010-9638-z
  9. Cho E-J, Rhee S-H, Park K-Y. Antimutagenic and cancer cell growth inhibitory effects of seaweeds. Prev Nutr Food Sci. 1997;2:348-53.
  10. Cho HB, Lee HH, Lee OH, Choi HS, Choi JS, Lee BY. Clinical and microbial evaluation of the effects on gingivitis of a mouth rinse containing an Enteromorpha linza extract. J Med Food. 2011b;14:1670-6. https://doi.org/10.1089/jmf.2011.1710
  11. Cho M, Lee HS, Kang IJ, Won MH, You S. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem. 2011a;127:999-1006. https://doi.org/10.1016/j.foodchem.2011.01.072
  12. Cho S, Kim J, Yoon M, Yang H, Um MY, Park J, Park E-J, Yoo H, Baek J, Jo J. Monitoring and optimization of the effects of the blending ratio of corn, sesame, and perilla oils on the oxidation and sensory quality of seasoned laver Pyropia spp. Fish Aquat Sci. 2015;18:27-33.
  13. Choi EO, Kim HS, Han MH, Park C, Kim BW, Hwang JA, Choi Y, Hwang H-J. Induction of apoptosis by methyl alcohol extract of Enteromorpha linza (Linnaeus) J Agardh in U937 human leukemia cells. Trop J Pharm Res. 2014;13:881-8. https://doi.org/10.4314/tjpr.v13i6.8
  14. Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong J, Kim DK, Jung JH. Antiinflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J Nat Prod. 2008;71:232-40. https://doi.org/10.1021/np070452q
  15. FAO. Fishery and aquaculture statistics. Aquaculture production 1950-2012 (FishstatJ). In: FAO Fisheries and Aquaculture Department [online or CD-ROM]. Rome. Updated 2014. http://www.fao.org/fishery/statistics/software/fishstatj/en; 2014.
  16. Fleurence J, Levine I (eds). Seaweed in health and disease prevention. Amsterdam: Elsevier. 2016.
  17. Go H, Hwang HJ, Nam TJ. Polysaccharides from Capsosiphon fulvescens stimulate the growth of IEC-6 cells by activating the MAPK signaling pathway. Mar Biotechnol. 2011;13:433-40. https://doi.org/10.1007/s10126-010-9314-y
  18. Han AR, Kim SW, Chun SH, Nam MH, Hong CO, Kim BH, Kim TC, Lee KW. Effect of diet containing whole wheat bread with capsosiphon fulvescens and lindera obtusiloba ethanol extracts on plasma glucose and lipid levels in rats. Korean J Food Sci Technol. 2016;48:178-86. https://doi.org/10.9721/KJFST.2016.48.2.178
  19. Heo SJ, Cha SH, Lee KW, Jeon YJ. Antioxidant activities of red algae from Jeju Island. Algae. 2006;21:149-56. https://doi.org/10.4490/ALGAE.2006.21.1.149
  20. Huh MK, Lee HY, Lee BK, Choi JS. Genetic diversity and relationships between wild and cultivated populations of the sea lettuce, Enteromorpha prolifera, in Korea revialed by RAPD markers. Protistology. 2004;3:243-50.
  21. Hwang HJ, Kwon MJ, Kim IH, Nam TJ. The effect of polysaccharide extracted from the marine alga Capsosiphon fulvescens on ethanol administration. Food Chem Toxicol. 2008;46:2653-7. https://doi.org/10.1016/j.fct.2008.04.027
  22. Jais A, Bruning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest. 2017;127:24-32. https://doi.org/10.1172/JCI88878
  23. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci. 1997;94:14683-8. https://doi.org/10.1073/pnas.94.26.14683
  24. Jin Q, Dong S. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense. J Exp Mar Bio Ecol. 2003;293:41-55. https://doi.org/10.1016/S0022-0981(03)00214-4
  25. Kang M, Kim SW, Kim JW, Kim TH, Kim JS. Optimization of levulinic acid production from Gelidium amansii. Renew Energ. 2013;54:173-9. https://doi.org/10.1016/j.renene.2012.08.028
  26. Kang MC, Kang N, Kim SY, Lima IS, Ko SC, Kim YT, Kim YB, Jeung HD, Choi KS, Jeon YJ. Popular edible seaweed, Gelidium amansii prevents against dietinduced obesity. Food Chem Toxicol. 2016;90:181-7. https://doi.org/10.1016/j.fct.2016.02.014
  27. Kang MC, Kim SY, Kim EA, Lee JH, Kim YS, Yu SK, Chae JB, Choe IH, Cho JH, Jeon YJ. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model. Carbohydr Polym. 2015b;127:38-46. https://doi.org/10.1016/j.carbpol.2015.02.043
  28. Kang SR, Choi JH, Kim DW, Park SE, Sapkota K, Kim S, Kim SJ. A bifunctional protease from green alga Ulva pertusa with anticoagulant properties: partial purification and characterization. J Appl Phycol. 2015a;28:599-607.
  29. Karnjanapratum S, Tabarsa M, Cho M, You S. Characterization and immunomodulatory activities of sulfated polysaccharides from Capsosiphon fulvescens. Int J Biol Macromol. 2012;51:720-9. https://doi.org/10.1016/j.ijbiomac.2012.07.006
  30. Kilinc B, Koru E, Turan G, Tekogul H, Cirik S Seaweeds for food and industrial applications, 2013. INTECH Open Access Publisher. https://www.intechopen.com/books/food-industry/seaweeds-for-food-and-industrial-applications.
  31. Kim EY, Choi YH, Lee JI, Kim IH, Nam TJ. Antioxidant activity of oxygen evolving enhancer protein 1 purified from Capsosiphon fulvescens. J Food Sci. 2015a;80:1412-7. https://doi.org/10.1111/1750-3841.12883
  32. Kim EY, Nam TJ, Oh JH. Hydrophilic compartments of Capsosiphon fulvescens protein alleviate impaired spatial memory by regulating BDNF-mediated ER stress against chronic ethanol exposure. J Funct Foods. 2017;35:474-80. https://doi.org/10.1016/j.jff.2017.06.003
  33. Kim KN, Ahn G, Heo SJ, Kang SM, Kang MC, Yang HM, Kim D, Roh SW, Kim SK, Jeon BT, Park PJ, Jung WK, Jeon YJ. Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. Environ Toxicol Pharmacol. 2013a;35:39-46. https://doi.org/10.1016/j.etap.2012.10.002
  34. Kim KO. Re-orienting cuisine: East Asian foodways in the twenty-first century. New York: Berghahn Books. 2015.
  35. Kim SC, Lee JR, Park SJ. Porphyra tenera induces apoptosis of oral cancer cells. Korea J Herbol. 2015b;30:25-30.
  36. Kim YK. Total phenolic contents and antioxidant activities of Undaria pinnatifida and Capsosiphon fulvescens. Korean J Food Cook Sci. 2010;26:499-502.
  37. Kim YM, Kim IH, Nam TJ. Capsosiphon fulvescens glycoprotein inhibits AGS gastric cancer cell proliferation by downregulating Wnt-1 signaling. Int J Oncol. 2013b;43:1395-401. https://doi.org/10.3892/ijo.2013.2079
  38. Kim YM, Kim IH, Nam TJ. Inhibition of AGS human gastric cancer cell invasion and proliferation by Capsosiphon fulvescens glycoprotein. Mol Med Rep. 2013c;8:11-6. https://doi.org/10.3892/mmr.2013.1492
  39. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659:15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  40. Kwon HK, Kang H, Oh YH, Park SR, Kim G. Green tide development associated with submarine groundwater discharge in a coastal harbor, Jeju, Korea. Sci Rep. 2017;7:6325. https://doi.org/10.1038/s41598-017-06711-0
  41. Kwon M-J, Nam T-J. A polysaccharide of the marine alga Capsosiphon fulvescens induces apoptosis in AGS gastric cancer cells via an IGF-IR-mediated PI3K/Akt pathway. Cell Biol Int. 2007;31:768-75. https://doi.org/10.1016/j.cellbi.2007.01.010
  42. Lee JH, Han KD, Jung HM, Youn YH, Lee JY, Park YG, Lee S-H, Park YM. Association between obesity, abdominal obesity, and adiposity and the prevalence of atopic dermatitis in young Korean adults: the Korea National Health and Nutrition Examination Survey 2008-2010. Allergy Asthma Immunol Res. 2016a;8:107-14.
  43. Lee JH, Kim HH, Ko JY, Jang JH, Kim GH, Lee JS, Nah JW, Jeon YJ. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system. Carbohydr Polym. 2016b;153:512-7. https://doi.org/10.1016/j.carbpol.2016.07.122
  44. Lee SA, Moon SM, Choi YH, Han SH, Park BR, Choi MS, Kim JS, Kim YH, Kim DK, Kim CS. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenaninduced rats. Biomed Pharmacother. 2017;93:1055-64. https://doi.org/10.1016/j.biopha.2017.07.026
  45. Leung MYM, Carlsson NP, Colditz GA, Chang S-H. The burden of obesity on diabetes in the United States: medical expenditure panel survey, 2008 to 2012. Value Health. 2017;20:77-84. https://doi.org/10.1016/j.jval.2016.08.735
  46. Mabeau S, Fleurence J. Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol. 1993;4:103-7. https://doi.org/10.1016/0924-2244(93)90091-N
  47. Maeda R, Ida T, Ihara H, Sakamoto T. Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells. Biosci Biotechnol Biochem. 2012a;76:501-5. https://doi.org/10.1271/bbb.110813
  48. Maeda R, Ida T, Ihara H, Sakamoto T. Induction of apoptosis in MCF-7 cells by beta-1,3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci Biotechnol Biochem. 2012b;76:1032-4. https://doi.org/10.1271/bbb.120016
  49. Manzoor Z, Koo J-E, Ali I, Kim J-E, Byeon S-H, Yoo E-S, Kang H-K, Hyun J-W, Lee N-H, Koh Y-S. 4-Hydroxy-2, 3-dimethyl-2-nonen-4-olide has an inhibitory effect on pro-inflammatory cytokine production in CpG-stimulated bone marrow-derived dendritic cells. Mar drugs. 2016;14:88. https://doi.org/10.3390/md14050088
  50. Matanjun P, Mohamed S, Mustapha NM, Muhammad K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol. 2009;21:75-80. https://doi.org/10.1007/s10811-008-9326-4
  51. Meinita MDN, Marhaeni B, Hong Y-K, Jeong G-T. Enzymatic saccharification of agar waste from Gracilaria verrucosa and Gelidium latifolium for bioethanol production. J Appl Phycol. 2017;29:3201-9. https://doi.org/10.1007/s10811-017-1205-4
  52. Meinita MDN, Marhaeni B, Winanto T, Jeong G-T, Khan MNA, Hong Y-K. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol. 2013;25:1957-61. https://doi.org/10.1007/s10811-013-0041-4
  53. Mohibbullah M, Abdul Hannan M, Park IS, Moon IS, Hong YK. The edible red seaweed Gracilariopsis chorda promotes axodendritic architectural complexity in hippocampal neurons. J Med Food. 2016;19:638-44. https://doi.org/10.1089/jmf.2016.3694
  54. Mohibbullah M, Hannan MA, Choi JY, Bhuiyan MM, Hong YK, Choi JS, Choi IS, Moon IS. The edible marine alga Gracilariopsis chorda alleviates hypoxia/reoxygenation-induced oxidative stress in cultured hippocampal neurons. J Med Food. 2015;18:960-71. https://doi.org/10.1089/jmf.2014.3369
  55. Nguyen TH, Ra CH, Sunwoo I, Jeong GT, Kim SK. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess Biosyst Eng. 2017;40:529-36. https://doi.org/10.1007/s00449-016-1718-2
  56. Nguyen VT, Ueng JP, Tsai GJ. Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J Food Sci. 2011;76:950-8. https://doi.org/10.1111/j.1750-3841.2011.02289.x
  57. Oh KH, Choi Y-S. Development of a pasting and garnishing machine for manufacturing kimbugak. J Biosyst Eng. 2015;40:320-6. https://doi.org/10.5307/JBE.2015.40.4.320
  58. Park MH. The effect of Capsosiphon fulvecense extract on inhibition of platelet aggregation and serum lipid level in ovariertomized rats. J Life Sci. 2005;15:1028-33. https://doi.org/10.5352/JLS.2005.15.6.1028
  59. Park NH, Choi JS, Hwang SY, Kim YC, Hong YK, Cho KK, Choi IS. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. Bot Stud. 2013;54:39. https://doi.org/10.1186/1999-3110-54-39
  60. Park SY, Song H-H, Ha S-D. Synergistic effects of NaOCl and ultrasound combination on the reduction of Escherichia coli and Bacillus cereus in raw laver. Foodborne Pathog Dis. 2014;11:373-8. https://doi.org/10.1089/fpd.2013.1665
  61. Patra JK, Baek KH. Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against foodborne pathogenic bacteria. Molecules. 2016;21:388. https://doi.org/10.3390/molecules21030388
  62. Patra JK, Das G, Baek KH. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and salmonella typhimurium. Bot Stud. 2015;56:13. https://doi.org/10.1186/s40529-015-0093-7
  63. Pesic M, Greten FR. Inflammation and cancer: tissue regeneration gone awry. Curr Opin Cell Biol. 2016;43:55-61. https://doi.org/10.1016/j.ceb.2016.07.010
  64. Pushpamali WA, Nikapitiya C, Zoysa MD, Whang I, Kim SJ, Lee J. Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata. Carbohydr Polym. 2008;73:274-9. https://doi.org/10.1016/j.carbpol.2007.11.029
  65. Qi H, Sun Y. Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. Int J Biol Macromol. 2015;76:326-9. https://doi.org/10.1016/j.ijbiomac.2015.03.006
  66. Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorganic Med Chem Lett. 2006;16:2441-5. https://doi.org/10.1016/j.bmcl.2006.01.076
  67. Qi X, Mao W, Chen Y, Chen Y, Zhao C, Li N, Wang C. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta). J Ocean U China. 2013;12:175-82. https://doi.org/10.1007/s11802-013-2057-4
  68. Sanjeewa KKA, Lee JS, Kim WS, Jeon YJ. The potential of brown-algae polysaccharides for the development of anticancer agents: an update on anticancer effects reported for fucoidan and laminaran. Carbohydr Polym. 2017;177:451-9. https://doi.org/10.1016/j.carbpol.2017.09.005
  69. Seo MJ, Lee OH, Choi HS, Lee BY. Extract from edible red seaweed (Gelidium amansii) inhibits lipid accumulation and ROS production during differentiation in 3T3-L1 cells. Prev Nutr Food Sci. 2012;17:129-35. https://doi.org/10.3746/pnf.2012.17.2.129
  70. Shao LL, Xu J, Shi MJ, Wang XL, Li YT, Kong LM, Hider RC, Zhou T. Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chem. 2017;237:481-7. https://doi.org/10.1016/j.foodchem.2017.05.119
  71. Sharma BR, Kim HJ, Rhyu DY. Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med. 2015;13:62. https://doi.org/10.1186/s12967-015-0412-5
  72. Sharma BR, Rhyu DY. Anti-diabetic effects of Caulerpa lentillifera: stimulation of insulin secretion in pancreatic beta-cells and enhancement of glucose uptake in adipocytes. Asian Pac J Trop Biomed. 2014;4:575-80. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0091
  73. Shaw NS, Liu YH. Bioavailability of iron from purple laver (Porphyra spp.) estimated in a rat hemoglobin regeneration bioassay. J Agric Food Chem. 2000;48:1734-7. https://doi.org/10.1021/jf990759y
  74. Shi MJ, Wei X, Xu J, Chen BJ, Zhao DY, Cui S, Zhou T. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: preparation and in vitro antioxidant activity. Food Chem. 2017;215:76-83. https://doi.org/10.1016/j.foodchem.2016.07.151
  75. Song SJ, Ryu J, Khim JS, Kim W, Yun SG. Seasonal variability of community structure and breeding activity in marine phytal harpacticoid copepods on Ulva pertusa from Pohang, east coast of Korea. J Sea Res. 2010;63:1-10. https://doi.org/10.1016/j.seares.2009.08.004
  76. Synytsya A, Choi DJ, Pohl R, Na YS, Capek P, Lattova E, Taubner T, Choi JW, Lee CW, Park JK, Kim WJ, Kim SM, Lee J, Park YI. Structural features and anticoagulant activity of the sulphated polysaccharide SPS-CF from a green alga Capsosiphon fulvescens. Mar Biotechnol (NY). 2015;17:718-35. https://doi.org/10.1007/s10126-015-9643-y
  77. Tang Z, Gao H, Wang S, Wen S, Qin S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. Int J Biol Macromol. 2013;58:186-9. https://doi.org/10.1016/j.ijbiomac.2013.03.048
  78. Walenga JM, Bick RL. Heparin-induced thrombocytopenia, paradoxical thromboembolism, and other side effects of heparin therapy. Med Clin North Am. 1998;82:635-58. https://doi.org/10.1016/S0025-7125(05)70015-8
  79. Wang X, Zhang Z, Yao Q, Zhao M, Qi H. Phosphorylation of low-molecularweight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydr Polym. 2013a;96:371-5. https://doi.org/10.1016/j.carbpol.2013.04.029
  80. Wang X, Zhang Z, Yao Z, Zhao M, Qi H. Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int J Biol Macromol. 2013b;58:225-30. https://doi.org/10.1016/j.ijbiomac.2013.04.005
  81. Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol. 2009;100:6658-60. https://doi.org/10.1016/j.biortech.2009.07.017
  82. Woo MS, Choi HS, Lee OH, Lee BY. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells. Phytother Res. 2013;27:1102-5. https://doi.org/10.1002/ptr.4813
  83. Xu J, Xu LL, Zhou QW, Hao SX, Zhou T, Xie HJ. Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera. Int J Biol Macromol. 2015;81:1026-30. https://doi.org/10.1016/j.ijbiomac.2015.09.055
  84. Yang H, Jung K, Gang K, Song B, Lim H, Na H, Mun H, Heo N. Physicochemical composition of seaweed fulvescens (Capsosiphon fulvescens). Korean J Food Sci Technol. 2005;37:912-7.
  85. Yang TH, Yao HT, Chiang MT. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. J Food Drug Anal. 2017;25:931-8. https://doi.org/10.1016/j.jfda.2016.12.008
  86. Zhang LX, Zhang N, Li J, Wang Z. (2013). New ${\alpha}$-glucosidase inhibitory polysaccharides isolated from marine green algae Enteromorpha Linza. Advanced materials research, Trans Tech Publ 2013a;634:1010-1015.
  87. Zhang Z, Wang X, Li J, Liu C, Zhang Q. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells. Int J Biol Macromol. 2016;87:252-5. https://doi.org/10.1016/j.ijbiomac.2016.02.065
  88. Zhang Z, Wang X, Yu S, Yin L, Zhao M, Han Z. Synthesized oversulfated and acetylated derivatives of polysaccharide extracted from Enteromorpha linza and their potential antioxidant activity. Int J Biol Macromol. 2011;49:1012-5. https://doi.org/10.1016/j.ijbiomac.2011.08.023
  89. Zhang Z, Wang X, Zhao M, Qi H. O-acetylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Int J Biol Macromol. 2014;69:39-45. https://doi.org/10.1016/j.ijbiomac.2014.04.058
  90. Zhang Z, Wang X, Zhao M, Yu S, Qi H. The immunological and antioxidant activities of polysaccharides extracted from Enteromorpha linza. Int J Biol Macromol. 2013b;57:45-9. https://doi.org/10.1016/j.ijbiomac.2013.03.006
  91. Zheng J, Chen Y, Yao F, Chen W, Shi G. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax. Mar Drugs. 2012;10:2634-47. https://doi.org/10.3390/md10122634

Cited by

  1. Integral Utilization of Red Seaweed for Bioactive Production vol.17, pp.6, 2018, https://doi.org/10.3390/md17060314
  2. Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice vol.12, pp.6, 2018, https://doi.org/10.3390/nu12061848
  3. Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells vol.265, pp.None, 2018, https://doi.org/10.1016/j.jep.2020.113340
  4. Value for Regional Branding of Seafood:Focus on Seaweed in Korea vol.51, pp.1, 2018, https://doi.org/10.2457/srs.51.37
  5. The underexplored potential of green macroalgae in aquaculture vol.14, pp.1, 2022, https://doi.org/10.1111/raq.12580