DOI QR코드

DOI QR Code

선체부착생물관리와 수중제거기술

Ship's Hull Fouling Management and In-Water Cleaning Techniques

  • 현봉길 (한국해양과학기술원 선박평형수연구센터) ;
  • 장풍국 (한국해양과학기술원 선박평형수연구센터) ;
  • 신경순 (한국해양과학기술원 선박평형수연구센터) ;
  • 강정훈 (한국해양과학기술원 위해성분석연구센터) ;
  • 장민철 (한국해양과학기술원 선박평형수연구센터)
  • Hyun, Bonggil (Ballast Water Research Center, Korea Institute of Ocean Sciences & Technology) ;
  • Jang, Pung-Guk (Ballast Water Research Center, Korea Institute of Ocean Sciences & Technology) ;
  • Shin, Kyoungsoon (Ballast Water Research Center, Korea Institute of Ocean Sciences & Technology) ;
  • Kang, Jung-Hoon (Risk Assessment Research Center, Korea Institute of Ocean Sciences & Technology) ;
  • Jang, Min-Chul (Ballast Water Research Center, Korea Institute of Ocean Sciences & Technology)
  • 투고 : 2018.08.03
  • 심사 : 2018.10.26
  • 발행 : 2018.10.31

초록

국제해사기구는 선체부착생물의 위험성을 인식해서 2011년 '선체부착생물에 의한 외래위해종 이동 저감을 위한 관리 및 제어 가이드라인'을 공표하였고, 향후 이를 강제화하기 위한 국제 협약을 계획하고 있다. 본 연구에서는 향후 강제화 될 국제협약에 효과적으로 대응하기 위해 선체부착생물관리 관련 선도국 사례를 소개하고 수중제거에 대한 환경 위해성 평가 기법에 대해서도 알아보았다. 선체부착생물관리 관련해서 선도국인 호주와 뉴질랜드는 수중제거 시나리오 의거해 수행한 생물 및 화학 위해성 평가를 근간으로 선체부착생물관리규제안을 마련하였다. 자국 정부의 특별한 규정이 없는 대부분의 유럽 국가들은 국제해사기구의 선체부착생물 규정에 따라 수중제거를 수행하는 것으로 확인되었다. 우리나라인 경우 선체부착생물에 대한 국내법은 존재하지 않고, 해양 생태계법에 의거해서 약 17종의 해양생태게교란생물만 지정해서 관리하고 있다. 선박 선체에 대한 수중제거는 외래생물 확산 및 수생 환경으로의 화학 물질 방출을 수반하므로, 생물학적 위해성평가와 화학적 위해성평가를 별개로 수행한 후 이 둘의 평가를 종합하여 수중제거 수용 여부를 판단하였다. 생물학적 위해성평가는 수중제거과정에서 외래생물 유입에 영향을 미치는 핵심요소를 기반으로 40 code의 수중제거 시나리오 작성하고 위해성우선순위(Risk Priority Number, RPN) 점수를 산정하였다. 화학적 위해성평가는 수중제거 시 용출되는 구리(Copper) 농도를 기준으로 MAMPEC(Marine Antifoulant Model to Predict Environmental Concentrations) 모델 프로그램을 사용하여 PEC(Predict Environmental Concentration) 값과 PNEC(Predict No Effect Concentration) 값을 산출하였다. 최종적으로 PEC/PNEC 비의 값이 1 이상이면 화학적 위해성이 높음을 의미한다. R/V 이어호가 부산감천항에서 수중제거를 수행한다는 가정하에 위해성평가를 시범 실시한 결과, 생물학적 위해성은 RPN이 <10,000 이어서 저위험으로 판단되었으나, PEC/PNEC 비의 값이 1 이상으로 화학적 위해성이 높아 최종적으로 수중제거가 불가능한 것으로 평가되었다. 따라서 우리나라도 선도국 사례를 참조해서 수중제거기술을 개발하고 또한 국내 항만 현실에 맞는 선체부착생물규제 국내법을 제정해야 할 필요가 있을 것이다.

The International Maritime Organization (IMO) has recognized the risk of hull fouling and announced '2011 Guidelines for the control and management of ship's biofouling to minimize the transfer of invasive aquatic species'and is planning international regulations to enforce them in the future. In this study, to effectively respond to future international regulation, we introduce the case of leading countries related to management of hull fouling and also investigate environmental risk assessment techniques for in-water cleaning. Australia and New Zealand, the leading countries in hull fouling management, have established hull fouling regulations through biological and chemical risk assessment based on in-water cleaning scenarios. Most European countries without their government regulation have been found to perform in-water cleaning in accordance with the IMO's hull fouling regulations. In the Republic of Korea, there is no domestic law for hull fouling organisms, and only approximately 17 species of marine ecological disturbance organisms, are designated and managed under the Marine Ecosystem Law. Since in-water cleaning is accompanied by diffusion of alien species and release of chemical substances into aquatic environments, results from biological as well as chemical risk assessment are performed separately, and then evaluation of in-water cleaning permission is judged by combining these two results. Biological risk assessment created 40 codes of in-water cleaning scenarios, and calculated Risk Priority Number (RPN) scores based on key factors that affect intrusion of alien species during in-water cleaning. Chemical risk assessment was performed using the MAMPEC (Marine Antifoulant Model to Predict Environmental Concentrations), to determine PEC and PNEC values based on copper concentration released during in-water cleaning. Finally, if the PEC/PNEC ratio is >1, it means that chemical risk is high. Based on the assumption that the R/V EARDO ship performs in-water cleaning at Busan's Gamcheon Port, biological risk was estimated to be low due to the RPN value was <10,000, but the PEC/PNEC ratio was higher than 1, it was evaluated as impossible for in-water cleaning. Therefore, it will be necessary for the Republic of Korea to develop the in-water cleaning technology by referring to the case of leading countries and to establish domestic law of ship's hull fouling management, suitable for domestic harbors.

키워드

참고문헌

  1. Alzieu, C. and M. Heral(1984), Ecotoxicological effects of organotin compounds on oyster culture. In: Ecotoxicological Testing for the Marine Environment; G. Persoone & al. (Eds.), Ghent & Inst. Mar. Scient. Res., Belgium, Vol. 2, pp. 187-196.
  2. ANZECC(1996), Working together to reduce impacts from shipping operations: code of practice for antifouling and in-water hull cleaning and maintenance. Australia and New Zealand Environment and Conservation Council, Canberra, p. 10.
  3. Beaumont, A. R. and M. D. Budd(1984). High mortality of the larvae of the common mussel at low concentrations of tributyltin, Marine pollution bulletin, Vol. 15, No. 11, pp. 402-405. https://doi.org/10.1016/0025-326X(84)90256-X
  4. Brand, L. E., W. G. Sunda and R. R. Guillard(1986), Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, Vol. 96, No. 3, pp. 225-250. https://doi.org/10.1016/0022-0981(86)90205-4
  5. Champ, M. A. and P. F. Seligman(1996), Organotin: environmental fate and effects, London: Chapman & Hall.
  6. Chan, F. T., J. J. MacIsaac and S. A. Bailey(2015), Relative importance of vessel hull fouling and ballast water as transport vectors of nonindigenous species to the Canadian Arctic, Canadian Journal of Fisheries and Aquatic Sciences, Vo. 72, No. 8, pp. 1230-1242. https://doi.org/10.1139/cjfas-2014-0473
  7. Cheung, K. C., M. H. Wong and Y. K. Yung(2003), Toxicity assessment of sediments containing tributyltin around Hong Kong harbour, Toxicology letters, Vol. 137, No. 1-2, pp. 121-131. https://doi.org/10.1016/S0378-4274(02)00386-7
  8. Coutts, A. D. and B. M. Forrest(2007), Development and application of tools for incursion response: lessons learned from the management of the fouling pest Didemnum vexillum, Journal of Experimental Marine Biology and Ecology, Vol. 342, No. 1, pp. 154-162. https://doi.org/10.1016/j.jembe.2006.10.042
  9. Coutts, A. D. M. and B. M. Forrest(2005), Evaluation of eradication tools for the clubbed tunicate Styela clava, Cawthron Report, Vol. 1110, p. 48.
  10. de Castro, I. B., F. C. Perina and G. Fillmann(2012), Organotin contamination in South American coastal areas, Environmental Monitoring and Assessment, Vol. 184, No. 3, pp. 1781-1799. https://doi.org/10.1007/s10661-011-2078-7
  11. De Stasio, B. T., M. B. Schrimpf and B. H. Cornwell(2014), Phytoplankton communities in Green Bay, Lake Michigan after invasion by dreissenid mussels: Increased dominance by cyanobacteria, Diversity, Vol. 6, No. 4, pp. 681-704. https://doi.org/10.3390/d6040681
  12. Hearin, J., K. Z. Hunsucker, G. Swain, A. Stephens, H. Gardner, K. Lieberman and M. Harper(2015), Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating, Biofouling, Vo. 31, No. 8, pp. 625-638. https://doi.org/10.1080/08927014.2015.1081687
  13. Hyun, B., S. H. Baek, K. Shin and K. H. Choi(2017), Assessment of phytoplankton invasion risks in the ballast water of international ships in different growth conditions, Aquatic Ecosystem Health & Management, Vol. 20, No. 4, pp. 423-434.
  14. Hyun, B., K. Shin, M. C. Jang, P. G. Jang, W. J. Lee, C. Park and K. H. Choi(2016), Potential invasions of phytoplankton in ship ballast water at South Korean ports, Marine and Freshwater Research, Vol. 67, No. 12, pp. 1906-1917. https://doi.org/10.1071/MF15170
  15. IMO(2005), International Concentration on the control of harmful antifouling systems (AES) on ship, 2005 Edition, IMO, London, p. 69.
  16. Kang(2018), Development of risk assessment for control technology to reduce transfer fo ships' biofouling: In-water cleaning technique.
  17. Kim, N. S., S. H. Hong, J. G. An, K. H. Shin and W. J. Shim(2015), Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea, Marine pollution bulletin, Vol. 95, No. 1, pp. 484-490. https://doi.org/10.1016/j.marpolbul.2015.03.010
  18. Kotrikla, A.(2009). Environmental management aspects for TBT antifouling wastes from the shipyards, Journal of Environmental Management, Vol. 90, S77-S85. https://doi.org/10.1016/j.jenvman.2008.07.017
  19. Leung, K. M., J. R. Wheeler, D. Morritt and M. Crane(2001), Endocrine disruption in fishes and invertebrates: issues for saltwater ecological risk assessment, Coastal and Estuarine Risk Assessment, Lewis Publishers, Boca Raton, pp. 189-216.
  20. MEPC(2011), Guidelines for the Control and Management of Ships' Biofouling to Minimise the Transfer of Invasive Aquatic Species.
  21. Morrisey, D. and C. Woods(2015), In-water cleaning technologies: Review of information, MPI Technical Paper.
  22. Morrisey, D. J. Gadd, M. Page, J. Lewis, A. Bell and E. Georgiades(2013), In-water cleaning of vessels: Biosecurity and chemical contamination risks, MPI Technical Paper, 2013/11, Wellington, New Zealand, p. 267.
  23. Moller, J. K. and F. Stuer-Lauridsen(2016), Non-indigenous species from hull fouling in Danish marine waters.
  24. Nimmo, D. R. and T. L. Hamaker(1982), Mysids in toxicity testing-a review, In Ecology of Mysidacea (pp. 171-178), Springer, Dordrecht.
  25. Readman, J. W.(2006), Development, Occurrence and Regulationof Antifouling Paint Biocides: Historical Review and Future Trends, In Antifouling paint biocides, Springer, Berlin, Heidelberg, pp. 1-15.
  26. Ruiz, G. M., T. K. Rawlings, F. C. Dobbs, L. A. Drake, T. Mullady, A. Huq and R. R. Colwell(2000), Global spread of microorganisms by ships, Nature, Vol. 408, No. 6808, p. 49. https://doi.org/10.1038/35040695
  27. Sapozhnikova, Y., E. Wirth, K. Schiff and M. Fulton(2013), Antifouling biocides in water and sediments from California marinas, Marine pollution bulletin, Vol. 69, No. 1-2, pp. 189-194. https://doi.org/10.1016/j.marpolbul.2013.01.039
  28. Silkina, A., A. Bazes, F. Vouve, V. Le Tilly, P. Douzenel, J. L. Mouget and N. Bourgougnon(2009), Antifouling activity of macroalgal extracts on Fragilaria pinnata (Bacillariophyceae): a comparison with Diuron, Aquatic toxicology, Vol. 94, No. 4, pp. 245-254. https://doi.org/10.1016/j.aquatox.2009.07.004
  29. Suk, J. H.(2018), A Study on the Regulatory Framework Related to Ship's Biofouling. The Korea Institute Of Maritime Law, Vol. 30, No. 1, pp. 139-173. https://doi.org/10.14443/kimlaw.2018.30.1.5
  30. Thomas, K. V. and S. Brooks(2010), The environmental fate and effects of antifouling paint biocides, Biofouling, Vol. 26, No. 1, pp. 73-88. https://doi.org/10.1080/08927010903216564
  31. Woods, C., O. Floerl, I. Fitridge, O. Johnston, K. Robinson, D. Rupp, N. Davey, N. Rush and M. Smith(2007), Evaluation of the seasonal efficacy of hull cleaning methods, Biosecurity New Zealand Technical Report, ZBS2005-22, p. 119.
  32. Yebra, D. M., S. Kiil and K. Dam-Johansen(2004), Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings, Progress in organic coatings, Vol. 50, No. 2, pp. 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001
  33. Zhou, J. L.(2008), Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England, Science of the total environment, Vol. 406, No. 1-2, pp. 239-246. https://doi.org/10.1016/j.scitotenv.2008.07.049