
65

 *주저자 : Konkuk University Human ICT Professor: e-mail: naturaljeon@konkuk.ac.kr

￭ 접수일：2018년 7월 5일 / 심사일：2018년 7월 25일 / 게재확정일：2018년 8월 9일

딥러닝이 적용된 게임 밸런스에 관한 연구
게임 기획 방법론의 관점으로

Game Elements Balancing using Deep Learning in Artificial Neural Network

전준현, Joonhyun Jeon*

요약 게임플레이어는 게임에서 수많은 적들을 만나고 싸우게 되는데, 이 때 너무나 손쉽게 이기거나 진다면 게임의
재미는 반감될 것이다. 그 반대로 너무 어렵게 이긴다거나 지는 것도 게임을 지루하게 만드는 요인으로 작용한다.
따라서 상대방과의 전투나 경쟁에서 아슬아슬하게 승리하는 긴장감을 주기 위해서는 게임의 밸런스가 잘 맞아야 한
다. 그만큼 게임 밸런싱 작업은 게임의 재미와 가장 직접적으로 영향을 미치는 요소로 작용한다. 그리고 게임 밸런
스만큼 중요한 것이 있는데, 그것은 플레이어에게 적절한 난이도의 상대를 계속 만나게 하는 것이다. 본 연구에서는
이러한 문제를 해결하려는 방법으로써 게임 밸런스에 딥러닝을 적용하여 지능 캐릭터가 플레이어를 통해 학습하고
스스로 플레이어의 난이도에 따라 자신의 난이도를 조절할 수 있도록 고안하였다. 이것이 활성화되면 게임 기획자나
개발자에게는 그만큼의 비용을 절약하는 동시에 플레이어에게는 항상 흥미로운 상대를 제공할 수 있는 획기적인 방
법이 될 것이다.

Abstract Game balance settings are crucial to game design. Game balancing must take into
account a large amount of numerical values, configuration data, and the relationship between
elements. Once released and served, a game – even for a balanced game – often requires
calibration according to the game player’s preference. To achieve sustainability, game balance
needs adjustment while allowing for small changes. In fact, from the producers’ standpoint,
game balance issue is a critical success factor in game production. Therefore, they often
invest much time and capital in game design. However, if such a costly game cannot provide
players with an appropriate level of difficulty, the game is more likely to fail. On the
contrary, if the game successfully identifies the game players’ propensity and performs
self-balancing to provide appropriate difficulty levels, this will significantly reduce the
likelihood of game failure, while at the same time increasing the lifecycle of the game.
Accordingly, if a novel technology for game balancing is developed using artificial intelligence
(AI) that offers personalized, intelligent, and customized service to individual game players, it
would bring significant changes to the game production system.

핵심어: Game artificial intelligence, Deep Learning AI, Automated game balance, Game character
balancing, NPC balancing

66

1. Introduction

‘Game Balance’ is a method to determine the relationships

and perspectives of the elements that constitute a game, and

also implement them in computer programs. Game balance is

closely related to the development of computer technology;

thus, it is limited by the computer’s performance or processing

capacity. Computer games are recognized as one of the

creative arts competing with the media industry – movies,

novels, TV shows, or music. Importantly, the biggest

difference (between game balance and creative arts) is that

game development is a software development process.

Computer games are a convergent software program where

media arts that are visually provided along with gameplay are

integrated with musical elements. Notwithstanding that

computer games use cinematic techniques or insert

storytelling for its dramatic effect, they are basically computer

software consisting of computer programming languages such

as C++ or Direct3D. For this reason, computer games are

confined to the computing environment. In other words, they

are only possible within the range of values that computers

can represent[11].

In the past, balancing was subject to many constraints

owing to system limitations. Still, game balancing relies on the

conventional techniques even today, when we enjoy

remarkably advanced computer technologies and systems.

There are two main reasons why the current game balancing

has not been fully developed. First, relevant knowledge or

methods are not shared or disclosed because game design,

considered confidential business information, cannot easily be

publicized. In turn, it impedes rigorous research on the topic.

Second, the characteristics of game production environment

are such that game designers are required to immediately

work on a project and participate without sufficient

preparation time for research to attempt to achieve game

balance. Therefore, game balancing sticks to the old methods,

except in cases where the conventional methods of game

balancing are not applicable.

For the configuration of an artificial neural network, this

study uses “Weka”, a data mining program that allows AI

characters to calculate the players’ combat patterns and

determine their optimized behaviors and settings through the

application of Multilayer perceptron.

The method proposed in this study was designed to

self-adjust game difficulty levels by identifying the player’s

propensity (combat pattern, player character settings, etc.)

across all game contents using AI characters. However, the

detailed settings may vary depending on the genre

characteristics or diversity of a game, which makes it difficult

to apply in some games. This is because online games may

run into unexpected circumstances (breaking into a lobby for

games with AI characters or attacking a player character, for

example) because of interactions between players, and player

experientiality is established in diverse ways for standalone

and multiplayer games. Therefore, the scope of this study will

be limited to the games that use AI characters.

In addition, to improve the clarity and reliability of the

study, the default values of commercialized games are used

for the data.

2. Literature Review and Game Balance

In recent times, game engines and game programming

technologies have made huge strides. New games are being

released almost every week. However, not every game

becomes popular among players. Even if a game contains all

the necessary gameplay elements, the game might be

disregarded by the public, unless it effectively provides a

balance between the components. For this reason, further

consideration should be given to the definition of a

‘well-balanced game.’

In gameplay, one of the important elements that determine

whether a game is well-balanced and well-organized involves

“whether the player’s ability serves as a direct influence over

the player’s achievement.” In general, players who possess

more ability must be able to achieve more success than

players with less ability. Unexpected circumstances, in other

words, stochastic events such as luck may occur. However,

failure or success caused by recurrent events, unfortunate or

fortunate, regardless of the player’s ability, should not

continue to occur. The results must fully reflect one’s own

ability[9]. Game balance has been adjusted through a

repeating process of gameplay and modification. It was more

common to exhaust time toward game development before

releasing a game. To minimize the trial-and-error process,

major game developers often run the Quality Assurances

(QA) department. After the game release, necessary

modifications are made to balance the game in the form of a

patch. The reason there is no such thing as scientific and

stereotypical rules or formulae for game balancing is that

balancing a game is extremely difficult and it is a complex

process. Game balancing involves many pairs of independent

67

geometric variables. Thus, ‘how to optimize in multidimensional

space’ is the key issue for game balancing. Game balancing

does not have a ‘formal’ rule or method that controls such

optimization. Instead, it often refers to a minimal number of

abstract mathematical models or scenarios or uses modified

versions. Optimization of multidimensional space has already

been performed in various ways, among other scientific

disciplines, and such techniques can be adopted by the game

industry. These methods, however, cannot resolve all the

problems facing game balancing. Playing games and fixing

problems at first hand, of course, would be the most effective

method. Unfortunately, it consumes too much time and

resources, and errors are highly likely to occur nonetheless.

Furthermore, game balancing is a complex concept that

cannot be strictly defined by a clear-cut proposition such as

“A is B.” For example, the answers to questions – against

what it balances; either balancing the game itself or

balancing between players or some other ways of balancing

– are rather subjective by nature. For these reasons, the term

‘balancing’ in games often reminds us of the adjustment

associated with player characters (or Avatar) or a character’s

combat-related skills or default settings[12]. However, there

are many games without characters such as puzzle or

flight-simulated games. As such, owing to a wide variety of

genres and formats of games, combat-related balance is

insufficient to represent the whole game balance. There are

many other elements to be determined, besides combat. In his

book “Man, Play and Games”, Roger Caillois describes four

elements that constitute play: competition, chance, simulation,

and vertigo. This confirms that competing against opponents

is a critical factor in games. In addition, the unique structure

of computer games allows such elements of competition to be

better reflected in games.

Popular traditional games usually require a counterpart to

compete with. By contrast, computer games provide a

counterpart so that game users can enjoy solo play, where the

counterpart provided is called an AI character or Non-Player

Character (NPC). The success or failure of a game can be

determined by how much tension and excitement this AI

character can offer. Therefore, it is important to build an AI

character who improves as a player goes up the levels so that

the player remain interested in playing the game, and indeed,

actual game production has heavily focused on this aspect. As

if to prove this point, many studies have been conducted

mainly on character-related topics. Such research includes

analysis of monsters and their AI that are closely related to

a character’s battle experience. The findings of previous

studies are as follows:

Oh Byeol defines game balance as fairness towards all

players of different abilities in the Player versus Player (PvP)

game. AI and Excel were used for statistical analysis that

repeats testing, and a method of game balancing was

described based on the resulting values[1].

Jeon Jun-hyeon and Jeong Ui-jun proposed a method to

evaluate game balance by combining the character’s Status

value, combat skill, and profession into a numerical value[2].

Hyeon Hye-jeong and Kim Tae-sik conducted a more

detailed analysis of combat situation and proposed a method

to modify character settings by using combat length, strike

range, possible attacks, and character abilities[3].

Son Hyeong-ryul and Lim Chang-ju described game

balancing between characters by analyzing and comparing

the value of each unit according to the attack types of a

character based on battle scenarios[4].

Lim Chang-ju and Jin Shin proposed a method that adjusts

skill parameters to attach value to skills the massively

multiplayer online role-playing game (MMORPG) players use

and to balance out among characters[5].

Shin Jeong-yeop conducted an analysis of in-game

currency control model that takes a macroscopic approach to

game balance and level design based on the in-game currency

flow and the total currency in circulation[6].

In their study, Lee Chang-shin and Oh Gyu-hwan

suggest that the price of an item is one of the vital elements

for game balance, where the game items are regarded as a

vital factor capable of destroying the balance of a game,

ignoring the player’s capability and expertise[7].

Choi Seung-beom and Oh Gyu-hwan covered the

relationship between the control of in-game money earned

and the game balance, while describing the relationship

between game items and gameplay[8].

Moon Jun-sik describes the strategic aspects and

applications of map environment - the space where a game

takes play - in gameplay and explores the importance of

game balance[9].

The findings of previous studies are summarized in

Figure 1.

68

Figure 1. Previous research on game balance

If a game is defined as a competition that obeys fair rules,

‘game balance’ can be regarded as a state of equilibrium and

harmony that has been reached through fairness in a game.

Game balance, in the narrow sense, can be defined as fairness

among in-game elements (the relationship between game

characters, the values and settings between items, and the

application of game objects). In a broader sense, a

well-balanced game can be defined as a game in which the

ideas reflecting the designer’s intentions are arranged in a fair

and harmonious manner.

3. A Study of Deep Learning Applications in
Game Balance

This study will use the Weka framework that supports

multilayer perceptrons and trains them with backpropagation

for the purpose of full-scale neural network configuration.

To load a prepared dataset of combat skills in the Weka

Explorer, click the Open file button in the menu bar. The data

are excerpts from the Mage skills, one of the most played

classes in RPGs. There are nine most frequently used combat

skills, assigned to keypad 1 through 9, providing quick access

to the skills. Taking into account the system status, this study

analyzes the Mage abilities, mainly with the frequently used

skills. Information about the nine skills can be loaded in the

Skill.CSV data file as shown in Figure 2.

Figure 2. Dataset loading screen

Figure 2 shows that nine skills have been loaded, including

“Magic-Missile” assigned to the corresponding key No. 1

through to “Meteor” for No. 9. The Class involves two labels:

Lose and Win. The Win count is 373 and the Lose count is

626, indicating a higher weight on the Win.

The weights for all nine skills are exhibited in Figure 3.

The three pillars, as shown in Figure 3, represent the

Intelligent character, and Player 1 and Player 2, indicate the

higher active weights placed on the higher counts. To put it

plainly, these are the most frequently used skills among RPG

players, and it is more advantageous to use a high weighted

skill for victory.

Figure 3. Active skill weights

To apply an artificial neural network to the nine skills,

select “Classify” from the menu at the top of the Weka

Explorer window, then set the Filter of “Classifier” to

“Multiplayer Perceptron.” The program will then create all

active skills as input nodes and automatically generate the

hidden layer nodes that connect Win and Lose of the output

69

nodes. This allows the program to compute the weights for

each skill. The weight is a probability that affects Win or Lose,

an output node that indicates that selecting a skill with higher

weight increases the chances of winning. Figure 4 shows the

multilayer neural network configuration that contains a total of

27 nodes, where Intelligent character, and Player 1 and Player

2 have been setup to calculate the active weight of each skill.

Figure 4. Multilayer neural network configuration
for active skills

In Figure 4, the trainingTime is set to 800 times and values

of “hidden Layers” are set to ‘a’ so that the program can

create as many hidden layers as it needs. When you click

“Start,” then the program will automatically set the input

nodes for all active skills and use the automatically created

Hidden Layer to generate the values of the sigmoid function,

as shown in Figure 5, for each label: Win and Lose.

Figure 5. Sigmoid output resulting from active skill values

Figure 5 displays the results of executing the model, as

shown below.

=== Run information ===

Time taken to build model: 211.24 seconds

The results show that sigmoid node 0 and 1 represent

“Lose” and “Win,” respectively, and the nodes between 2 and

15, which are the hidden layer nodes, indicate the weight

values of each node. Such weights provide information about

what value to choose for reward, such as Q-Value. Here,

selecting the higher values means a more likelihood for

reward. For example, Node 13 of the sigmoid node 1 that

represents the Win node has the highest value of

6.81092749182954, which implies that Node 13 is most likely to

win. At Node 13, Frost-Nova=x has the highest value of

3.649. In conclusion, Player 2 (coded as xin the program) is

more likely to win the battle when Frost-Nova is the first skill

used in combat. If Intelligent character can compute

Q-Values in the same way as above and select higher values

through the Monte Carlo tree search, then the optimal skill

pattern can be created.

The resulting data can also be visualized in Weka. Select

“Classify” from the menu available at the top of the window

and set the filter to C4.5 Algorithm for data visualization.

Figure 6. Visualization based on active skill pattern

Weka’s visualization tools offer options that allow users to

view the optimized order and value of the skills at a glance,

as shown in Figure 6, along with the weight assigned to each

skill.

In RPGs, the types of skills and attack power used by a

70

player vary depending on character roles, but in a limited

amount of time, the pattern of skill use can be determined

according to the role of the opponent.

Next, the AI character should be able to level up itself,

after recognizing that the player’s level has improved. This is

because higher-level attack skills cause more damage no

matter how perfect the attack pattern is. Therefore, the AI

characters should be designed in such a way that they can

decide whether to level up or stay, based on the combat

results after the battle ends.

Data use should be based on the skill data configuration

available in <Appendix>.

Figure 7. Preprocessing for AI character’s auto level-up

Attributes consist of five elements: Levelchange,

Healthpoint, Prominence, Battle_win, and Battle_Result.

For data processing, the battle Log of the players is loaded in

the CSV file, then it is converted into an arff file, a Weka file

format.

Weka reads the data model to preprocess the data. In this

way, information based on the data model can be obtained, as

shown in Figure 7 where Levelchange has the highest value.

In addition, for the selected attribute, Levelchange, the

following three labels are produced as important elements:

Level_stay, Level-up, and Level-down. To apply the

decision tree to this data model, select J48 of Classifier from

the Classify tab on top of the window.

Figure 8. Resulting values of decision tree
for auto level-up

Once the program starts, the Run information can be

obtained from the Classifier output window as shown in

Figure 8. Ten-fold-Cross-Validation was used for data

validation. This can be visualized as a decision tree shown in

Figure 9.

Figure 9. Decision tree resulting values
based on battle results

The results in Figure 9 show that on the top tier, judgment

will be made as to whether the battle was won or lost

(Battle_win), based on battle results. If defeated, the AI

character will decide to change its level (Levelchange),

moving down along the line on the right hand (FALSE) side,

but in the case of victory, it proceeds to the left (TRUE) side.

When the battle is lost, judgment should be made as to

whether the defeat was due to the attack pattern or level

difference. Here, the Healthpoint serves as a criterion; if the

character’s healthpoint is greater than 70%, then the

character maintains its current level. If greater than 80%, the

character levels up. In sum, when engaged in PvP combat

71

with other players, the AI character adjusts its own attack

patterns and levels to consume 20% to 30% of the character’s

healthpoint.

To apply the decision tree described above to a program,

the source code must be extracted first.

Select the “Output source code” option from Test options

in Weka to obtain the code available for the program. The

application of this code to the program allows AI characters

to learn and modify their attack patterns or adjust their own

levels by making decisions based on the results of battle

against other players.

4. Conclusions and Implications

Even in a complex RPG environment, it is possible to configure

an environment such that the value of a player’s decision and

behavior pattern can be calculated by controlling a situation where

variables associated with the player may occur. Indeed, for

balancing MMORPGs, assuming that there is no possibility of

movement, only attack and defense skills, depending on character

roles, are taken into account, the possibility of movement does not

have to be considered for game balancing in the environment

where fair rules apply to all players. Therefore, each character skill

would be the sole consideration. However, unlike other games,

RPG has multiple skills and allows for a flexible skill arrangement

varying with the player’s UI settings. Therefore, the problem of

‘how to compare game balance’ still remains to be solved.

Balance comparison may be regarded by players as an

alterable element which, however, is not. This is because

balance comparison is, from a game producer’s viewpoint, an

internally fixed element designed to calculate the value of the

optimized pattern and behavior such as Q-Values. As shown

in Figure 10, each character skill has its own Unique ID value,

and all skills consist of attack power, attack range, cast time,

resource required for attacks, and cooldown time. Therefore,

depending on the five inputs, the total amount of damage a

player can inflict on an opponent or the defense

(constitution-based) value will be measured and displayed.

Figure 10. Worksheet for character skill settings balance

One of the most common ways to compare game balance

in actual games is to convert each skill into DPS for

comparison purposes. A higher DPS usually means more

damage to an opponent per second. Therefore, if fighting a

battle for the same amount of time, a player with a higher

DPS will be more likely to win because the player can inflict

more damage to the opponent. However, higher DPS does not

necessarily guarantee victory. A character with a higher DPS,

but lower stamina could die from a low DPS attack. As such,

balancing the value of skills has been noted as a tricky issue

owing to many possible outcomes for the attack and defense

skills in RPGs. For these reasons, in “A Pilot Study of

MMORPG Combat Balance Evaluation Model” by Jeon

Joon-hyeon, et al., a character’s ‘constitution’ was determined

to be the most important value, and the values of all skills

were converted into a single value related to the ‘constitution’

for comparison purposes. Their study has implications for

game balance research because it combined the complex

balance values into a single value for easy comparison based

on the settings where the constitution attribute is considered

preeminent.

Unfortunately, their study has limitations in that it requires

manual settings by a game producer. If artificial intelligence

can be put to use in such settings, then it will facilitate an

objective comparison based on numeric values. In RPGs, it is

pointless to compare only individual skills. This can be

explained by the fact that the resulting values will vary

depending on the combination of a character’s skills, even if

an individual’s skill is well-balanced. Figure 12 shows a

pattern of in-combat skills used by a Mage character in

World of Warcraft.’This pattern is based on a combination of

skills that can strike a fatal blow to the opponent while

defending oneself. Fstart, Pyro, Conf, MI, IF, and ROP are

abbreviations of the corresponding skill.

72

Figure 11. Mage skill pattern in World of Warcraft

Figure 11 shows various ways of combining the individual

skills. A skill combo usually consists of the initial skill and the

following one that maximizes the previous skill effect. For

example, ROP is the most frequently used skill after Fstart

(Fstart_ROP_), which is often followed by FO

(_ROP_FO_). Such combination is indicative of optimal

behavior for the next skill, following a certain skill.

Suppose there are about four candidate skills optimized for

the second slot in a skill combo, if the values of the four skills

such as Q-Values discussed in Chapter 3 can be computed

individually and the NPC skill pattern optimized for the

combination of such patterns can be determined, then the

general pattern of players will change; accordingly, the NPC

skill patterns will automatically change, allowing an artificial

intelligence character to adjust its own difficulty level. In the

study of Shin Yong-woo and Jeong Tae-Chung, similar to

this concept, an attempt was made to predict a player’s

behavior by using sequential prediction and N-grams models.

In this process, a Pattern can be recognized with sequential

prediction that involves predicting the next value for a given

Sequence of certain values, and the next value can be

predicted through the N-grams model. In other words, when

a set of skills determined by a player are denoted by 1 2 3

4 3 4 3 4, the counterattack can be made by considering the

high probability of attack 4, following the 1 2 3 sequence

because the number 4 is highly likely to come after 3. In this

case, however, even though the optimal pattern can be

identified through reinforcement learning, based on a simple

probability, the value of the pattern cannot be observed and

it is difficult to make a weighted selection for each behavior.

Another limitation is that, considering the actual game

production conditions, there are too many possible

combinations of skills despite the predicted values obtained

from the pattern. In fact, in the case of AlphaGo, the Monte

Carlo tree search (MCTS) was used to overcome the

limitations. Therefore, this study should also find the optimal

pattern that allows the AI character to predict the player's

behavior while making the player feel a sense of tension[13].

In addition, the following design strategy is proposed to ensure

that the skill pattern of each character maintains a balance

between DSP and constitution.

Step 1: Compute the total sum of DPS and constitution

(output values) from the combination of skills for each

character (input values) by using Q-Value algorithm.

Step 2: Enter the skill combo pattern intended by the

designer as an input value for the input node, then enter the

total sum generated from Step 1 into the output node.

Calculate the value of skill combo pattern obtained from the

hidden layer node to generate the numerical values.

Step 3: Based on the pattern obtained from Step 2, allow

NPC to learn the optimal pattern by using the Monte Carlo

tree search.

Step 4: Collect the combat Log (a record of gameplay)

among players and compare with the pattern entered. Design

it in such a way that it can vary with the player’s pattern,

based on reinforcement learning through backpropagation.

This study proposes a method of game balancing using

deep learning techniques. The proposed method will save time

and effort in the process where a player character is first set

up and accordingly balanced as intended. In addition, the

proposed method does not require a complete definition of the

AI character’s behaviors and conditions that uses finite-state

machine (FSM) or flowcharts; rather, the AI character

would adjust the difficulty level tailored to its player through

self-learning from the player’s behavior and decision making.

This will always engage players with new competitors as if

they encounter different opponents.

This study will also significantly save time and costs

required for game balancing in the related industries. Much of

game design costs are labor related. However, the

permanency of labor is difficult to guarantee compared with

the spending. Human beings can make mistakes and leave

the company owing to sickness or unexpected events. On the

73

other hand, programs make relatively less mistakes or have

less of a factor that lowers the permanency compared to

humans. In this sense, this study will deliver significant cost

savings from the design sector while facilitating reinvestment

in other sectors, leading to a higher success rate of new game

introductions in the market. In addition, If the user’s physical

ability is numerically applied in a medical game field where

a game level system is used. It could be used in various fields

including the medical field.

In the academic domain, such attempts at artificial

intelligence applications and innovations will serve as a

starting point for further research on game balancing design.

Moreover, the game engine using Q-Value and Deep

Learning techniques will be commercialized so that everyone

can compare the values of skills they intend to design.

참고문헌

[1] 오별. AI를 이용한 게임 밸런스 방법. 정보과학회지.
27(10). 한국정보과학회. pp. 25-28. 2009

[2] 전준현, 김동은, 정의준. MMORPG 전투밸런스 평가모델
기초연구. 한국컴퓨터게임학회논문지. 26(3). 한국컴퓨터
게임학회. pp. 49-60. 2013

[3] 현혜정, 김태식. 게임 밸런싱을 위한 효과적인 캐릭터 조절
알고리즘. 한국콘텐츠학회논문지. 8(1). 한국콘텐츠학회.
pp. 339-347. 2008.

[4] 손형률, 임창주. 전투시나리오를 기반으로 한 유니트 런싱:
WAP 게임 D.N.A.의 적용 사례. 한국컴퓨터게임학회논문
지. (7). 한국컴퓨터게임학회. pp. 73-78. 2005.

[5] 신정엽, 스마일 게이트. 온라인게임의 게임통화 관리모델
연구. 한국게임학회논문지. 13(5). 한국게임학회. pp.
5-18. 2013.

[6] 이창신, 오규환. 멀티 플레이 지원 게임의 온라인 게임 전
환을 위한 디자인 이슈 연구. 한국컴퓨터게임학회논문지.
24(4). 한국컴퓨터게임학회. pp. 153-162. 2011.

[7] 최승범, 오규환. 온라인 게임에서 게임머니 판매모델을 위
한 게임 디자인. 한국컴퓨터게임학회논문지. 24(2). 한국
컴퓨터게임학회. pp. 127-136. 2011.

[8] 문준식. FPS 게임의 공간 디자인을 위한 VAE 모델 적용에
관한 연구. 디자인융복합논문지. 13(3). 디자인 융복합학
회. pp. 77-90. 2014.

[9] Schell, J. The Art of Game Design: A Book of Lenses
(2nd ed.). San Francisco, CA: CRC press. 2014.

[10] Rollings, A. and Adams, E. Andrew Rollings and
Ernest Adams on game design (1st Ed.). Indianapolis,
Ind: New Riders. 2003.

[11] Adams, E. Fundamentals of game design (3rd Ed.).
Indianapolis, Ind: New Riders. 2013.

[12] Csikszentmihalyi, M. Flow: the psychology of opti-
mal experience. New York, USA: Harper Perennial
Modern Classics. 2008.

[13] Silver, D. and Huang, A. et al. Mastering the game
of Go with deep neural networks and tree search.
Nature. 529(7587). Nature Press. pp. 484-489. 2016

[14] Caillois, R. Les jeux et les hommes. Paris, FRA:
Gallimard Education. 1992.

<Appendix>

#1 스킬 공격 패턴에 사용한 스킬 데이터 사항

#2 스킬 데이터의 서버 데이터

