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딥러닝이 적용된 게임 밸런스에 관한 연구
게임 기획 방법론의 관점으로

Game Elements Balancing using Deep Learning in Artificial Neural Network

전준현, Joonhyun Jeon*

요약  게임플레이어는 게임에서 수많은 적들을 만나고 싸우게 되는데, 이 때 너무나 손쉽게 이기거나 진다면 게임의 
재미는 반감될 것이다. 그 반대로 너무 어렵게 이긴다거나 지는 것도 게임을 지루하게 만드는 요인으로 작용한다. 
따라서 상대방과의 전투나 경쟁에서 아슬아슬하게 승리하는 긴장감을 주기 위해서는 게임의 밸런스가 잘 맞아야 한
다. 그만큼 게임 밸런싱 작업은 게임의 재미와 가장 직접적으로 영향을 미치는 요소로 작용한다. 그리고 게임 밸런
스만큼 중요한 것이 있는데, 그것은 플레이어에게 적절한 난이도의 상대를 계속 만나게 하는 것이다. 본 연구에서는 
이러한 문제를 해결하려는 방법으로써 게임 밸런스에 딥러닝을 적용하여 지능 캐릭터가 플레이어를 통해 학습하고 
스스로 플레이어의 난이도에 따라 자신의 난이도를 조절할 수 있도록 고안하였다. 이것이 활성화되면 게임 기획자나 
개발자에게는 그만큼의 비용을 절약하는 동시에 플레이어에게는 항상 흥미로운 상대를 제공할 수 있는 획기적인 방
법이 될 것이다.

Abstract  Game balance settings are crucial to game design. Game balancing must take into 
account a large amount of numerical values, configuration data, and the relationship between 
elements. Once released and served, a game – even for a balanced game – often requires 
calibration according to the game player’s preference. To achieve sustainability, game balance 
needs adjustment while allowing for small changes. In fact, from the producers’ standpoint, 
game balance issue is a critical success factor in game production. Therefore, they often 
invest much time and capital in game design. However, if such a costly game cannot provide 
players with an appropriate level of difficulty, the game is more likely to fail. On the 
contrary, if the game successfully identifies the game players’ propensity and performs 
self-balancing to provide appropriate difficulty levels, this will significantly reduce the 
likelihood of game failure, while at the same time increasing the lifecycle of the game. 
Accordingly, if a novel technology for game balancing is developed using artificial intelligence 
(AI) that offers personalized, intelligent, and customized service to individual game players, it 
would bring significant changes to the game production system. 

핵심어: Game artificial intelligence, Deep Learning AI, Automated game balance, Game character 
balancing, NPC balancing
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1. Introduction

‘Game Balance’ is a method to determine the relationships 

and perspectives of the elements that constitute a game, and 

also implement them in computer programs. Game balance is 

closely related to the development of computer technology; 

thus, it is limited by the computer’s performance or processing 

capacity. Computer games are recognized as one of the 

creative arts competing with the media industry – movies, 

novels, TV shows, or music. Importantly, the biggest 

difference (between game balance and creative arts) is that 

game development is a software development process. 

Computer games are a convergent software program where 

media arts that are visually provided along with gameplay are 

integrated with musical elements. Notwithstanding that 

computer games use cinematic techniques or insert 

storytelling for its dramatic effect, they are basically computer 

software consisting of computer programming languages such 

as C++ or Direct3D. For this reason, computer games are 

confined to the computing environment. In other words, they 

are only possible within the range of values that computers 

can represent[11].

In the past, balancing was subject to many constraints 

owing to system limitations. Still, game balancing relies on the 

conventional techniques even today, when we enjoy 

remarkably advanced computer technologies and systems. 

There are two main reasons why the current game balancing 

has not been fully developed. First, relevant knowledge or 

methods are not shared or disclosed because game design, 

considered confidential business information, cannot easily be 

publicized. In turn, it impedes rigorous research on the topic. 

Second, the characteristics of game production environment 

are such that game designers are required to immediately 

work on a project and participate without sufficient 

preparation time for research to attempt to achieve game 

balance. Therefore, game balancing sticks to the old methods, 

except in cases where the conventional methods of game 

balancing are not applicable.   

For the configuration of an artificial neural network, this 

study uses “Weka”, a data mining program that allows AI 

characters to calculate the players’ combat patterns and 

determine their optimized behaviors and settings through the 

application of Multilayer perceptron.   

The method proposed in this study was designed to 

self-adjust game difficulty levels by identifying the player’s 

propensity (combat pattern, player character settings, etc.) 

across all game contents using AI characters. However, the 

detailed settings may vary depending on the genre 

characteristics or diversity of a game, which makes it difficult 

to apply in some games. This is because online games may 

run into unexpected circumstances (breaking into a lobby for 

games with AI characters or attacking a player character, for 

example) because of interactions between players, and player 

experientiality is established in diverse ways for standalone 

and multiplayer games. Therefore, the scope of this study will 

be limited to the games that use AI characters. 

In addition, to improve the clarity and reliability of the 

study, the default values of commercialized games are used 

for the data.

2. Literature Review and Game Balance 

In recent times, game engines and game programming 

technologies have made huge strides. New games are being 

released almost every week. However, not every game 

becomes popular among players. Even if a game contains all 

the necessary gameplay elements, the game might be 

disregarded by the public, unless it effectively provides a 

balance between the components. For this reason, further 

consideration should be given to the definition of a 

‘well-balanced game.’     

In gameplay, one of the important elements that determine 

whether a game is well-balanced and well-organized involves 

“whether the player’s ability serves as a direct influence over 

the player’s achievement.” In general, players who possess 

more ability must be able to achieve more success than 

players with less ability. Unexpected circumstances, in other 

words, stochastic events such as luck may occur. However, 

failure or success caused by recurrent events, unfortunate or 

fortunate, regardless of the player’s ability, should not 

continue to occur. The results must fully reflect one’s own 

ability[9]. Game balance has been adjusted through a 

repeating process of gameplay and modification. It was more 

common to exhaust time toward game development before 

releasing a game. To minimize the trial-and-error process, 

major game developers often run the Quality Assurances 

(QA) department. After the game release, necessary 

modifications are made to balance the game in the form of a 

patch. The reason there is no such thing as scientific and 

stereotypical rules or formulae for game balancing is that 

balancing a game is extremely difficult and it is a complex 

process. Game balancing involves many pairs of independent 
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geometric variables. Thus, ‘how to optimize in multidimensional 

space’ is the key issue for game balancing. Game balancing 

does not have a ‘formal’ rule or method that controls such 

optimization. Instead, it often refers to a minimal number of 

abstract mathematical models or scenarios or uses modified 

versions. Optimization of multidimensional space has already 

been performed in various ways, among other scientific 

disciplines, and such techniques can be adopted by the game 

industry. These methods, however, cannot resolve all the 

problems facing game balancing. Playing games and fixing 

problems at first hand, of course, would be the most effective 

method. Unfortunately, it consumes too much time and 

resources, and errors are highly likely to occur nonetheless. 

Furthermore, game balancing is a complex concept that 

cannot be strictly defined by a clear-cut proposition such as 

“A is B.” For example, the answers to questions – against 

what it balances; either balancing the game itself or 

balancing between players or some other ways of balancing 

– are rather subjective by nature. For these reasons, the term 

‘balancing’ in games often reminds us of the adjustment 

associated with player characters (or Avatar) or a character’s 

combat-related skills or default settings[12]. However, there 

are many games without characters such as puzzle or 

flight-simulated games. As such, owing to a wide variety of 

genres and formats of games, combat-related balance is 

insufficient to represent the whole game balance. There are 

many other elements to be determined, besides combat. In his 

book “Man, Play and Games”, Roger Caillois describes four 

elements that constitute play: competition, chance, simulation, 

and vertigo. This confirms that competing against opponents 

is a critical factor in games. In addition, the unique structure 

of computer games allows such elements of competition to be 

better reflected in games.

Popular traditional games usually require a counterpart to 

compete with. By contrast, computer games provide a 

counterpart so that game users can enjoy solo play, where the 

counterpart provided is called an AI character or Non-Player 

Character (NPC). The success or failure of a game can be 

determined by how much tension and excitement this AI 

character can offer. Therefore, it is important to build an AI 

character who improves as a player goes up the levels so that 

the player remain interested in playing the game, and indeed, 

actual game production has heavily focused on this aspect. As 

if to prove this point, many studies have been conducted 

mainly on character-related topics. Such research includes 

analysis of monsters and their AI that are closely related to 

a character’s battle experience. The findings of previous 

studies are as follows:

Oh Byeol defines game balance as fairness towards all 

players of different abilities in the Player versus Player (PvP) 

game. AI and Excel were used for statistical analysis that 

repeats testing, and a method of game balancing was 

described based on the resulting values[1].     

Jeon Jun-hyeon and Jeong Ui-jun proposed a method to 

evaluate game balance by combining the character’s Status 

value, combat skill, and profession into a numerical value[2].  

 

Hyeon Hye-jeong and Kim Tae-sik conducted a more 

detailed analysis of combat situation and proposed a method 

to modify character settings by using combat length, strike 

range, possible attacks, and character abilities[3].   

Son Hyeong-ryul and Lim Chang-ju described game 

balancing between characters by analyzing and comparing 

the value of each unit according to the attack types of a 

character based on battle scenarios[4].   

Lim Chang-ju and Jin Shin proposed a method that adjusts 

skill parameters to attach value to skills the massively 

multiplayer online role-playing game (MMORPG) players use 

and to balance out among characters[5].   

Shin Jeong-yeop conducted an analysis of in-game 

currency control model that takes a macroscopic approach to 

game balance and level design based on the in-game currency 

flow and the total currency in circulation[6].     

In their study, Lee Chang-shin and Oh Gyu-hwan  

suggest that the price of an item is one of the vital elements 

for game balance, where the game items are regarded as a 

vital factor capable of destroying the balance of a game, 

ignoring the player’s capability and expertise[7].   

Choi Seung-beom and Oh Gyu-hwan covered the 

relationship between the control of in-game money earned 

and the game balance, while describing the relationship 

between game items and gameplay[8].  

Moon Jun-sik describes the strategic aspects and 

applications of map environment - the space where a game 

takes play - in gameplay and explores the importance of 

game balance[9].  

The findings of previous studies are summarized in  

Figure 1.
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Figure 1. Previous research on game balance
 

If a game is defined as a competition that obeys fair rules, 

‘game balance’ can be regarded as a state of equilibrium and 

harmony that has been reached through fairness in a game. 

Game balance, in the narrow sense, can be defined as fairness 

among in-game elements (the relationship between game 

characters, the values and settings between items, and the 

application of game objects). In a broader sense, a 

well-balanced game can be defined as a game in which the 

ideas reflecting the designer’s intentions are arranged in a fair 

and harmonious manner.

3. A Study of Deep Learning Applications in 
Game Balance

This study will use the Weka framework that supports 

multilayer perceptrons and trains them with backpropagation 

for the purpose of full-scale neural network configuration. 

To load a prepared dataset of combat skills in the Weka 

Explorer, click the Open file button in the menu bar. The data 

are excerpts from the Mage skills, one of the most played 

classes in RPGs. There are nine most frequently used combat 

skills, assigned to keypad 1 through 9, providing quick access 

to the skills. Taking into account the system status, this study 

analyzes the Mage abilities, mainly with the frequently used 

skills. Information about the nine skills can be loaded in the 

Skill.CSV data file as shown in Figure 2.

Figure 2. Dataset loading screen
 

Figure 2 shows that nine skills have been loaded, including 

“Magic-Missile” assigned to the corresponding key No. 1 

through to “Meteor” for No. 9. The Class involves two labels: 

Lose and Win. The Win count is 373 and the Lose count is 

626, indicating a higher weight on the Win.   

The weights for all nine skills are exhibited in Figure 3. 

The three pillars, as shown in Figure 3, represent the 

Intelligent character, and Player 1 and Player 2, indicate the 

higher active weights placed on the higher counts. To put it 

plainly, these are the most frequently used skills among RPG 

players, and it is more advantageous to use a high weighted 

skill for victory.

 

Figure 3. Active skill weights
 

To apply an artificial neural network to the nine skills, 

select “Classify” from the menu at the top of the Weka 

Explorer window, then set the Filter of “Classifier” to 

“Multiplayer Perceptron.” The program will then create all 

active skills as input nodes and automatically generate the 

hidden layer nodes that connect Win and Lose of the output 
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nodes. This allows the program to compute the weights for 

each skill. The weight is a probability that affects Win or Lose, 

an output node that indicates that selecting a skill with higher 

weight increases the chances of winning. Figure 4 shows the 

multilayer neural network configuration that contains a total of 

27 nodes, where Intelligent character, and Player 1 and Player 

2 have been setup to calculate the active weight of each skill.

 

Figure 4. Multilayer neural network configuration 
for active skills

 
In Figure 4, the trainingTime is set to 800 times and values 

of “hidden Layers” are set to ‘a’ so that the program can 

create as many hidden layers as it needs. When you click 

“Start,” then the program will automatically set the input 

nodes for all active skills and use the automatically created 

Hidden Layer to generate the values of the sigmoid function, 

as shown in Figure 5, for each label: Win and Lose.

 

Figure 5. Sigmoid output resulting from active skill values

Figure 5 displays the results of executing the model, as 

shown below.  

 

=== Run information ===

Time taken to build model: 211.24 seconds

 

The results show that sigmoid node 0 and 1 represent 

“Lose” and “Win,” respectively, and the nodes between 2 and 

15, which are the hidden layer nodes, indicate the weight 

values of each node. Such weights provide information about 

what value to choose for reward, such as Q-Value. Here, 

selecting the higher values means a more likelihood for 

reward. For example, Node 13 of the sigmoid node 1 that 

represents the Win node has the highest value of 

6.81092749182954, which implies that Node 13 is most likely to 

win. At Node 13, Frost-Nova=x has the highest value of 

3.649. In conclusion, Player 2 (coded as xin the program) is 

more likely to win the battle when Frost-Nova is the first skill 

used in combat. If Intelligent character can compute 

Q-Values in the same way as above and select higher values 

through the Monte Carlo tree search, then the optimal skill 

pattern can be created.

The resulting data can also be visualized in Weka. Select 

“Classify” from the menu available at the top of the window 

and set the filter to C4.5 Algorithm for data visualization.

 

Figure 6. Visualization based on active skill pattern
 

Weka’s visualization tools offer options that allow users to 

view the optimized order and value of the skills at a glance, 

as shown in Figure 6, along with the weight assigned to each 

skill. 

In RPGs, the types of skills and attack power used by a 
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player vary depending on character roles, but in a limited 

amount of time, the pattern of skill use can be determined 

according to the role of the opponent.   

Next, the AI character should be able to level up itself, 

after recognizing that the player’s level has improved. This is 

because higher-level attack skills cause more damage no 

matter how perfect the attack pattern is. Therefore, the AI 

characters should be designed in such a way that they can 

decide whether to level up or stay, based on the combat 

results after the battle ends.

Data use should be based on the skill data configuration 

available in <Appendix>.

 

Figure 7. Preprocessing for AI character’s auto level-up
 

Attributes consist of five elements: Levelchange, 

Healthpoint, Prominence, Battle_win, and Battle_Result. 

For data processing, the battle Log of the players is loaded in 

the CSV file, then it is converted into an arff file, a Weka file 

format.  

Weka reads the data model to preprocess the data. In this 

way, information based on the data model can be obtained, as 

shown in Figure 7 where Levelchange has the highest value. 

In addition, for the selected attribute, Levelchange, the 

following three labels are produced as important elements: 

Level_stay, Level-up, and Level-down. To apply the 

decision tree to this data model, select J48  of Classifier from 

the Classify tab on top of the window.

 

Figure 8. Resulting values of decision tree 
for auto level-up

 
Once the program starts, the Run information can be 

obtained from the Classifier output window as shown in 

Figure 8. Ten-fold-Cross-Validation was used for data 

validation. This can be visualized as a decision tree shown in 

Figure 9.

 

Figure 9. Decision tree resulting values 
based on battle results

 
The results in Figure 9 show that on the top tier, judgment 

will be made as to whether the battle was won or lost 

(Battle_win), based on battle results. If defeated, the AI 

character will decide to change its level (Levelchange), 

moving down along the line on the right hand (FALSE) side, 

but in the case of victory, it proceeds to the left (TRUE) side. 

When the battle is lost, judgment should be made as to 

whether the defeat was due to the attack pattern or level 

difference. Here, the Healthpoint serves as a criterion; if the 

character’s healthpoint is greater than 70%, then the 

character maintains its current level. If greater than 80%, the 

character levels up. In sum, when engaged in PvP combat 
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with other players, the AI character adjusts its own attack 

patterns and levels to consume 20% to 30% of the character’s 

healthpoint.     

To apply the decision tree described above to a program, 

the source code must be extracted first. 

Select the “Output source code” option from Test options 

in Weka to obtain the code available for the program. The 

application of this code to the program allows AI characters 

to learn and modify their attack patterns or adjust their own 

levels by making decisions based on the results of battle 

against other players.

 

4. Conclusions and Implications

Even in a complex RPG environment, it is possible to configure 

an environment such that the value of a player’s decision and 

behavior pattern can be calculated by controlling a situation where 

variables associated with the player may occur. Indeed, for 

balancing MMORPGs, assuming that there is no possibility of 

movement, only attack and defense skills, depending on character 

roles, are taken into account, the possibility of movement does not 

have to be considered for game balancing in the environment 

where fair rules apply to all players. Therefore, each character skill 

would be the sole consideration. However, unlike other games, 

RPG has multiple skills and allows for a flexible skill arrangement 

varying with the player’s UI settings. Therefore, the problem of 

‘how to compare game balance’ still remains to be solved.   

Balance comparison may be regarded by players as an 

alterable element which, however, is not. This is because 

balance comparison is, from a game producer’s viewpoint, an 

internally fixed element designed to calculate the value of the 

optimized pattern and behavior such as Q-Values. As shown 

in Figure 10, each character skill has its own Unique ID value, 

and all skills consist of attack power, attack range, cast time, 

resource required for attacks, and cooldown time. Therefore, 

depending on the five inputs, the total amount of damage a 

player can inflict on an opponent or the defense 

(constitution-based) value will be measured and displayed.

 

Figure 10. Worksheet for character skill settings balance
 
One of the most common ways to compare game balance 

in actual games is to convert each skill into DPS for 

comparison purposes. A higher DPS usually means more 

damage to an opponent per second. Therefore, if fighting a 

battle for the same amount of time, a player with a higher 

DPS will be more likely to win because the player can inflict 

more damage to the opponent. However, higher DPS does not 

necessarily guarantee victory. A character with a higher DPS, 

but lower stamina could die from a low DPS attack. As such, 

balancing the value of skills has been noted as a tricky issue 

owing to many possible outcomes for the attack and defense 

skills in RPGs. For these reasons, in “A Pilot Study of 

MMORPG Combat Balance Evaluation Model” by Jeon 

Joon-hyeon, et al., a character’s ‘constitution’ was determined 

to be the most important value, and the values of all skills 

were converted into a single value related to the ‘constitution’ 

for comparison purposes. Their study has implications for 

game balance research because it combined the complex 

balance values into a single value for easy comparison based 

on the settings where the constitution attribute is considered 

preeminent.          

Unfortunately, their study has limitations in that it requires 

manual settings by a game producer. If artificial intelligence 

can be put to use in such settings, then it will facilitate an 

objective comparison based on numeric values. In RPGs, it is 

pointless to compare only individual skills. This can be 

explained by the fact that the resulting values will vary 

depending on the combination of a character’s skills, even if 

an individual’s skill is well-balanced. Figure 12 shows a 

pattern of in-combat skills used by a Mage character in 

World of Warcraft.’This pattern is based on a combination of 

skills that can strike a fatal blow to the opponent while 

defending oneself. Fstart, Pyro, Conf, MI, IF, and ROP are 

abbreviations of the corresponding skill. 
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Figure 11. Mage skill pattern in World of Warcraft
 
Figure 11 shows various ways of combining the individual 

skills. A skill combo usually consists of the initial skill and the 

following one that maximizes the previous skill effect. For 

example, ROP is the most frequently used skill after Fstart 

(Fstart_ROP_), which is often followed by FO 

(_ROP_FO_). Such combination is indicative of optimal 

behavior for the next skill, following a certain skill.

Suppose there are about four candidate skills optimized for 

the second slot in a skill combo, if the values of the four skills 

such as Q-Values discussed in Chapter 3 can be computed 

individually and the NPC skill pattern optimized for the 

combination of such patterns can be determined, then the 

general pattern of players will change; accordingly, the NPC 

skill patterns will automatically change, allowing an artificial 

intelligence character to adjust its own difficulty level. In the 

study of Shin Yong-woo and Jeong Tae-Chung, similar to 

this concept, an attempt was made to predict a player’s 

behavior by using sequential prediction and N-grams models. 

In this process, a Pattern can be recognized with sequential 

prediction that involves predicting the next value for a given 

Sequence of certain values, and the next value can be 

predicted through the N-grams model. In other words, when 

a set of skills determined by a player are denoted by 1 2 3 

4 3 4 3 4, the counterattack can be made by considering the 

high probability of attack 4, following the 1 2 3 sequence 

because the number 4 is highly likely to come after 3. In this 

case, however, even though the optimal pattern can be 

identified through reinforcement learning, based on a simple 

probability, the value of the pattern cannot be observed and 

it is difficult to make a weighted selection for each behavior. 

Another limitation is that, considering the actual game 

production conditions, there are too many possible 

combinations of skills despite the predicted values obtained 

from the pattern. In fact, in the case of AlphaGo, the Monte 

Carlo tree search (MCTS) was used to overcome the 

limitations. Therefore, this study should also find the optimal 

pattern that allows the AI character to predict the player's 

behavior while making the player feel a sense of tension[13]. 

In addition, the following design strategy is proposed to ensure 

that the skill pattern of each character maintains a balance 

between DSP and constitution.  

 

Step 1: Compute the total sum of DPS and constitution 

(output values) from the combination of skills for each 

character (input values) by using Q-Value algorithm. 

Step 2: Enter the skill combo pattern intended by the 

designer as an input value for the input node, then enter the 

total sum generated from Step 1 into the output node. 

Calculate the value of skill combo pattern obtained from the 

hidden layer node to generate the numerical values. 

 

Step 3: Based on the pattern obtained from Step 2, allow 

NPC to learn the optimal pattern by using the Monte Carlo 

tree search.

 

Step 4: Collect the combat Log (a record of gameplay) 

among players and compare with the pattern entered. Design 

it in such a way that it can vary with the player’s pattern, 

based on reinforcement learning through backpropagation.

 

This study proposes a method of game balancing using 

deep learning techniques. The proposed method will save time 

and effort in the process where a player character is first set 

up and accordingly balanced as intended. In addition, the 

proposed method does not require a complete definition of the 

AI character’s behaviors and conditions that uses finite-state 

machine (FSM) or flowcharts; rather, the AI character 

would adjust the difficulty level tailored to its player through 

self-learning from the player’s behavior and decision making. 

This will always engage players with new competitors as if 

they encounter different opponents.

This study will also significantly save time and costs 

required for game balancing in the related industries. Much of 

game design costs are labor related. However, the 

permanency of labor is difficult to guarantee compared with 

the spending. Human beings can make mistakes and leave 

the company owing to sickness or unexpected events. On the 
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other hand, programs make relatively less mistakes or have 

less of a factor that lowers the permanency compared to 

humans. In this sense, this study will deliver significant cost 

savings from the design sector while facilitating reinvestment 

in other sectors, leading to a higher success rate of new game 

introductions in the market. In addition, If the user’s physical 

ability is numerically applied in a medical game field where 

a game level system is used. It could be used in various fields 

including the medical field.

In the academic domain, such attempts at artificial 

intelligence applications and innovations will serve as a 

starting point for further research on game balancing design. 

Moreover, the game engine using Q-Value and Deep 

Learning techniques will be commercialized so that everyone 

can compare the values of skills they intend to design.
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<Appendix>

#1 스킬 공격 패턴에 사용한 스킬 데이터 사항

#2 스킬 데이터의 서버 데이터
 




