DOI QR코드

DOI QR Code

Acute kidney injury and continuous renal replacement therapy in children; what pediatricians need to know

  • Cho, Myung Hyun (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Kang, Hee Gyung (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine)
  • Received : 2018.08.31
  • Accepted : 2018.10.22
  • Published : 2018.11.15

Abstract

Acute kidney injury (AKI) is characterized by abrupt deterioration of renal function, and its diagnosis relies on creatinine measurements and urine output. AKI is associated with higher morbidity and mortality, and is a risk factor for development of chronic kidney disease. There is no proven medication for AKI. Therefore, prevention and early detection are important. Physicians should be aware of the risk factors for AKI and should monitor renal function in high-risk patients. Management of AKI includes optimization of volume status and renal perfusion, avoidance of nephrotoxic agents, and sufficient nutritional support. Continuous renal replacement therapy is widely available for critically ill children, and this review provides basic information regarding this therapy. Long-term follow-up of patients with AKI for renal function, blood pressure, and proteinuria is recommended.

Keywords

References

  1. Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol 2014;10:193-207.
  2. Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 2013;17:204. https://doi.org/10.1186/cc11454
  3. Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, et al. Neonatal Acute Kidney Injury. Pediatrics 2015;136:e463-73. https://doi.org/10.1542/peds.2014-3819
  4. Lagos-Arevalo P, Palijan A, Vertullo L, Devarajan P, Bennett MR, Sabbisetti V, et al. Cystatin C in acute kidney injury diagnosis: early biomarker or alternative to serum creatinine? Pediatr Nephrol 2015;30:665-76. https://doi.org/10.1007/s00467-014-2987-0
  5. Nehus EJ, Laskin BL, Kathman TI, Bissler JJ. Performance of cystatin C-based equations in a pediatric cohort at high risk of kidney injury. Pediatr Nephrol 2013;28:453-61. https://doi.org/10.1007/s00467-012-2341-3
  6. Moore PK, Hsu RK, Liu KD. Management of acute kidney injury: core curriculum 2018. Am J Kidney Dis 2018;72:136-48. https://doi.org/10.1053/j.ajkd.2017.11.021
  7. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 2013;17:R25. https://doi.org/10.1186/cc12503
  8. Endre ZH, Pickering JW. Acute kidney injury: cell cycle arrest biomarkers win race for AKI diagnosis. Nat Rev Nephrol 2014;10:683-5.
  9. Charlton JR, Portilla D, Okusa MD. A basic science view of acute kidney injury biomarkers. Nephrol Dial Transplant 2014;29:1301-11. https://doi.org/10.1093/ndt/gft510
  10. Chawla LS, Goldstein SL, Kellum JA, Ronco C. et al. Renal angina: concept and development of pretest probability assessment in acute kidney injury. Crit Care 2015;19:93. https://doi.org/10.1186/s13054-015-0779-y
  11. Section 2: AKI Definition. Kidney Int Suppl (2011) 2012;2:19-36. https://doi.org/10.1038/kisup.2011.32
  12. Kliegman RM, Stanton BF, St. Geme JW III, Schor NF, Behrman RE, editors. Nelson textbook of pediatrics. 20th ed. Philadelphia (PA): Elsevier, 2016.
  13. Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu A, Brenner BM. Brenner & Rector's the kidney. 9th ed. Philadelphia (PA): Elsevier, 2012.
  14. Lee HJ, Chung HI, Choi Y, Shin MJ, Moon HR. Epidemic of acute renal failure and Kawasaki disease-like illness caused by Yersinia pseudotuberculosis Infection. J Korean Med Assoc 1988;31:747-56.
  15. Grams ME, Astor BC, Bash LD, Matsushita K, Wang Y, Coresh J. Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. J Am Soc Nephrol 2010;21:1757-64. https://doi.org/10.1681/ASN.2010010128
  16. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 2014;85:659-67. https://doi.org/10.1038/ki.2013.349
  17. Morgan CJ, Zappitelli M, Robertson CM, Alton GY, Sauve RS, Joffe AR, et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr 2013;162:120-7.e1. https://doi.org/10.1016/j.jpeds.2012.06.054
  18. Sethi SK, Kumar M, Sharma R, Bazaz S, Kher V. Acute kidney injury in children after cardiopulmonary bypass: risk factors and outcome. Indian Pediatr 2015;52:223-6. https://doi.org/10.1007/s13312-015-0611-4
  19. Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 2014;10:37-47.
  20. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 2011;6:966-73. https://doi.org/10.2215/CJN.08781010
  21. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous RRT: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis 2010;55:316-25. https://doi.org/10.1053/j.ajkd.2009.10.048
  22. Mah KE, Hao S, Sutherland SM, Kwiatkowski DM, Axelrod DM, Almond CS, et al. Fluid overload independent of acute kidney injury predicts poor outcomes in neonates following congenital heart surgery. Pediatr Nephrol 2018;33:511-20. https://doi.org/10.1007/s00467-017-3818-x
  23. Bagshaw SM, Cruz DN. Fluid overload as a biomarker of heart failure and acute kidney injury. Contrib Nephrol 2010;164:54-68.
  24. Lee ST, Cho H. Fluid overload and outcomes in neonates receiving continuous renal replacement therapy. Pediatr Nephrol 2016;31:2145-52. https://doi.org/10.1007/s00467-016-3363-z
  25. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 2013;(7):CD007594.
  26. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and $plasma-lyte^{(R)}$ 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012;256:18-24. https://doi.org/10.1097/SLA.0b013e318256be72
  27. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. Balanced crystalloids versus saline in noncritically Ill adults. N Engl J Med 2018;378:819-28. https://doi.org/10.1056/NEJMoa1711586
  28. Friederich A, Martin N, Swanson MB, Faine BA, Mohr NM. Normal saline solution and actated Ringer's solution have a similar effect on quality of recovery: a randomized controlled trial. Ann Emerg Med 2018 Aug 23 [Epub]. pii: S0196-0644(18)30627-9. https://doi.org/10.1016/j.annemergmed.2018.07.007.
  29. Section 3: Prevention and Treatment of AKI. Kidney Int Suppl (2011) 2012;2:37-68. https://doi.org/10.1038/kisup.2011.33
  30. Section 4: Contrast-induced AKI. Kidney Int Suppl (2011) 2012;2:69-88. https://doi.org/10.1038/kisup.2011.34
  31. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 2018;378:603-14. https://doi.org/10.1056/NEJMoa1710933
  32. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008;358:125-39. https://doi.org/10.1056/NEJMoa070716
  33. Ho KM, Power BM. Benefits and risks of furosemide in acute kidney injury. Anaesthesia 2010;65:283-93. https://doi.org/10.1111/j.1365-2044.2009.06228.x
  34. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 2000;356:2139-43. https://doi.org/10.1016/S0140-6736(00)03495-4
  35. Toma A, Stone A, Green RS, Gray S. Steroids for patients in septic shock: the results of the CORTICUS trial. CJEM 2011;13:273-6. https://doi.org/10.2310/8000.2011.110243
  36. Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA 2014;312:2244-53. https://doi.org/10.1001/jama.2014.13573
  37. Mei M, Zhao HW, Pan QG, Pu YM, Tang MZ, Shen BB. Efficacy of Nacetylcysteine in preventing acute kidney injury after cardiac surgery: a meta-analysis study. J Invest Surg 2018;31:14-23. https://doi.org/10.1080/08941939.2016.1269853
  38. ACT Investigators. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrastinduced nephropathy Trial (ACT). Circulation 2011;124:1250-9. https://doi.org/10.1161/CIRCULATIONAHA.111.038943
  39. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstadt H, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 2016;315:2190-9. https://doi.org/10.1001/jama.2016.5828
  40. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Tubach F, Pons B, et al. Comparison of two strategies for initiating renal replacement therapy in the intensive care unit: study protocol for a randomized controlled trial (AKIKI). Trials 2015;16:170. https://doi.org/10.1186/s13063-015-0718-x
  41. Macedo E, Mehta RL. Continuous dialysis therapies: core curriculum 2016. Am J Kidney Dis 2016;68:645-57. https://doi.org/10.1053/j.ajkd.2016.03.427
  42. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000;356:26-30. https://doi.org/10.1016/S0140-6736(00)02430-2
  43. VA/NIH Acute Renal Failure Trial Network, Palevsky PM, Zhang JH, O'Connor TZ, Chertow GM, Crowley ST, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 2008;359:7-20. https://doi.org/10.1056/NEJMoa0802639
  44. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med 2009;37:2576-82. https://doi.org/10.1097/CCM.0b013e3181a38241
  45. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 2015;26:1765-76. https://doi.org/10.1681/ASN.2015010006
  46. Sigurjonsdottir VK, Chaturvedi S, Mammen C, Sutherland SM. Pediatric acute kidney injury and the subsequent risk for chronic kidney disease: is there cause for alarm? Pediatr Nephrol 2018;33:2047-55. https://doi.org/10.1007/s00467-017-3870-6
  47. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 2012;81:442-8. https://doi.org/10.1038/ki.2011.379
  48. Wu VC, Huang TM, Lai CF, Shiao CC, Lin YF, Chu TS, et al. Acute-onchronic kidney injury at hospital discharge is associated with longterm dialysis and mortality. Kidney Int 2011;80:1222-30. https://doi.org/10.1038/ki.2011.259
  49. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014;371:58-66. https://doi.org/10.1056/NEJMra1214243
  50. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 2012;59:523-30. https://doi.org/10.1053/j.ajkd.2011.10.048
  51. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3-5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 2006;69:184-9. https://doi.org/10.1038/sj.ki.5000032
  52. Chew ST, Ng RR, Liu W, Chow KY, Ti LK. Acute kidney injury increases the risk of end-stage renal disease after cardiac surgery in an Asian population: a prospective cohort study. BMC Nephrol 2017;18: 60. https://doi.org/10.1186/s12882-017-0476-y
  53. Benoit SW, Devarajan P. Acute kidney injury: emerging pharmacotherapies in current clinical trials. Pediatr Nephrol 2018;33:779-87. https://doi.org/10.1007/s00467-017-3695-3
  54. Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, et al. A novel drug for treatment of necrotizing soft-tissue infections: a randomized clinical trial. JAMA Surg 2014;149:528-36. https://doi.org/10.1001/jamasurg.2013.4841
  55. Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B. Levosimendan for prevention of acute kidney injury after cardiac surgery: a metaanalysis of randomized controlled trials. Am J Kidney Dis 2016;67:408-16. https://doi.org/10.1053/j.ajkd.2015.09.015

Cited by

  1. Pediatric Acute Kidney Injury: Focusing on Diagnosis and Management vol.24, pp.1, 2018, https://doi.org/10.3339/jkspn.2020.24.1.19