DOI QR코드

DOI QR Code

Calculation and Applicability of Rotifers Biomass (Polyarthra spp.) based on Length-Weight Relationship and Spatial Distribution of Body Length

윤충류 생체량 계산과 적용에 관한 고찰 및 제언: Polyarthra의 체장 분포를 이용한 길이-무게 관계식 및 생체량 비교 분석

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Seo, Dong-Hwan (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Choi, Moonjung (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jeong, Hyun-Gi (National Institute of Environmental Research) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • Oh, Jong Min (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University)
  • 오혜지 (경희대학교 환경학 및 환경공학과) ;
  • 서동환 (경희대학교 환경학 및 환경공학과) ;
  • 최문정 (경희대학교 환경학 및 환경공학과) ;
  • 정현기 (국립환경과학원) ;
  • 김현우 (순천대학교 환경교육학과) ;
  • 오종민 (경희대학교 환경학 및 환경공학과) ;
  • 장광현 (경희대학교 환경학 및 환경공학과)
  • Received : 2018.09.11
  • Accepted : 2018.09.30
  • Published : 2018.09.30

Abstract

In this study, we estimated the applicability of length-weight relationship-based biomass calculations by comparison of body length of genus Polyarthra collected from different habitats. Through the comparison, we also tested availability of representative species-specific biomass value of Polyarthra which is often used without length measurement. Polyarthra samples were collected from rivers (Han River and Nakdong River) and reservoir (Paldang Reservoir), and the body length was measured for statistical comparison among habitats and biomass calculations using different equations suggested previously. According to the results, the body length of Polyarthra spp. was significantly different among sampling sites, and the necessity of body length measurement for rotifer species in each situation has been suggested rather than using the representative biomass values which is fixed without considering time and space. Comparison of suggested biomass calculations based on our measured Polyarthra body length, the equation suggested by McCauley showed more reasonable range of biomass values than that suggested by EPA. In addition, in order to calculate more accurate biomass, it is necessary to measure the body length of rotifers, at least more than 44 individuals to reduce error probability to less than 5% with 99% probability. However, since direct measurement of rotifers biomass is limited, it is considered that further analyses are required for more precise application of rotifer biomass of which has high variability due to complex morphologies and species-specific cyclomorphosis often induced by biotic and abiotic factors in the habitats.

본 연구에서는 다른 환경에서 채집된 윤충류 개체의 체장을 측정하고 기존에 제시된 윤충류 생체량 측정 방법에 적용하여, 생체량 값의 분포 검증 및 비교를 실시하였다. 이를 바탕으로 적절한 윤충류 생체량 계산 방법에 대해 고찰하고, 체장 측정 없이 종별 생체량의 대푯값을 사용하는 것이 가능한지에 대한 여부를 판단했다. 검증을 위한 대상으로 국내외적으로 우점하고 단순한 형태를 가지는 Polyarthra 속을 선정, 한강, 낙동강 및 팔당호에서 시료를 채집, 분석하였다. 지점에 따른 Polyarthra spp. 개체의 체장은 통계적으로 유의한 차이를 나타내어, 지점별 체장의 차이가 생체량 대푯값을 이용하는데 발생하는 오차의 원인이 될 수 있는 것으로 분석되었다. 보다 정확한 생체량 계산을 위해 윤충류 개체의 체장 측정은 필수적인 것으로 판단되며, 생체량 계산 시 오차가 5% 이하일 확률을 99% 이상으로 높이기 위해서는 44개체 이상의 체장을 측정해야 하는 것으로 나타났다. 측정한 체장을 이용한 생체량 계산에는 EPA 계산식 대비 McCauley (1984)의 계산식을 사용하는 것이 보다 적합할 것으로 보이지만, 기술 검증이 어려운 항목이기 때문에 향후 본 조사에서 보여진 지점 간 변이 이외에 윤충류의 복잡한 형태 및 다양한 부속지의 변화 등을 고려하여 다양한 종을 대상으로 한 추가적인 분석이 필요할 것으로 판단된다.

Keywords

References

  1. Bottrell, H.H., A. Duncan, Z.M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson and T. Weglenska. 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419-456.
  2. Carlin, B. 1943. Die Planktonrotatorien des Montalastrom: zur taxonomie und okologie der planktonrotatorien. Carl Bloms Boktryckeri.
  3. Choi, K.H., C.R. Lee, H.K. Kang and K.A. Kang. 2011. Characteristics and variation of size-fractionated zooplankton biomass in the Northern East China Sea. Ocean and Polar Research 33(2): 135-147. https://doi.org/10.4217/OPR.2011.33.2.135
  4. Doohan, M. 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia 13(4): 351-362. https://doi.org/10.1007/BF01825525
  5. Dumont, H.J., I. Van de Velde and S. Dumont. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19(1): 75-97. https://doi.org/10.1007/BF00377592
  6. EPA Great Lakes National Office. 2003. Standard operating procedure for zooplankton analysis.
  7. Gilbert, J.J. 2018. Morphological variation and its significance in a polymorphic rotifer: environmental, endogenous, and genetic controls. BioScience 68(3): 169-181. https://doi.org/10.1093/biosci/bix162
  8. Havel, J.E., K.A. Medley, K.D. Dickerson, T.R. Angradi, D.W. Bolgrien, P.A. Bukaveckas and T.M. Jicha. 2009. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628(1): 121-135. https://doi.org/10.1007/s10750-009-9750-8
  9. Jackson, E.W., J.P. Doubek, J.S. Schaeffer and J.T. Lehman. 2013. Historical and recent biomass and food web relations of Limnocalanus in Lake Huron. Journal of Great Lakes Research 39(3): 404-408. https://doi.org/10.1016/j.jglr.2013.05.005
  10. Kim, H.W., G.H. La, K.S. Jeong, D.K. Kim, S.J. Hwang, J. Lee and B. Kim. 2013. Carbon, Nitrogen and Phosphorous Ratios of Zooplankton in the Major River Ecosystems. Korean Journal of Ecology and Environment 46(4): 581-587. https://doi.org/10.11614/KSL.2013.46.4.581
  11. Kim, H.W., H.G. Jeong, J.Y. Choi, S.K. Kim, K.S. Jeong, G.H. La, H.J. Oh and K.H. Chang. 2018. Past History of Freshwater Zooplankton Research in South Korea and Korean Society of Limnology and Future Directions. Korean Journal of Ecology and Environment 51(1): 40-59. https://doi.org/10.11614/KSL.2018.51.1.040
  12. Latja, R. and K. Salonen. 1978. Carbon analysis for the determination of individual biomasses of planktonic animals: With 4 tables in the text. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 20(4): 2556-2560.
  13. Makino, W., N. Maruoka, M. Nakagawa and N. Takamura. 2017. DNA barcoding of freshwater zooplankton in Lake Kasumigaura, Japan. Ecological Research 32(4): 481-493. https://doi.org/10.1007/s11284-017-1458-z
  14. McCauley, E. 1984. The estimation of the abundance and biomass of zooplankton in samples, p. 228-265. In: A manual on methods for the assessment of secondary productivity in fresh waters (Edmondson, W.T. and G.G. Winberg, eds.). Blackwell, Oxford.
  15. Nogueira, M.G. 2001. Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), Sao Paulo, Brazil. Hydrobiologia 155(1-3): 1-18. https://doi.org/10.1007/BF00025626
  16. Pauli, H.R. 1989. A new method to estimate individual dry weights of rotifers. Hydrobiologia 186(1): 355-361. https://doi.org/10.1007/BF00048932
  17. Pace, M.L. and J.D. Orcutt Jr. 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community 1. Limnology and Oceanography 26(5): 822-830. https://doi.org/10.4319/lo.1981.26.5.0822
  18. Schindler, D.W. and B. Noven. 1971. Vertical distribution and seasonal abundance of zooplankton in two shallow lakes of the Experimental Lakes Area, northwestern Ontario. Journal of the Fisheries Board of Canada 28(2): 245-256. https://doi.org/10.1139/f71-035
  19. Stich, H.B., M. Schumann and A. Brinker. 2018. Dynamics of pelagic rotifers subject to trophic fluctuations in Upper Lake Constance (1963-2012). Journal of Plankton Research 40(2): 118-128. https://doi.org/10.1093/plankt/fbx073
  20. Uhm, S.H. and S.J. Hwnag. 2006. Grazing relationship between phytoplankton and zooplankton in lake paldang ecosystem. Korean Journal of Limnology 39(3): 390-401.
  21. Watkins, J., L, Rudstam and K. Holeck. 2011. Length-weight regressions for zooplankton biomass calculations-A review and a suggestion for standard equations.
  22. Wetzel, R.G. and G.E. Likens. 1991. Collection, enumeration, and biomass of zooplankton. Limnological Analyses: 167-178. Springer, New York.
  23. Zhang, H., C. Bronmark and L.A. Hansson. 2017. Predator ontogeny affects expression of inducible defense morphology in rotifers. Ecology 98(10): 2499-2505. https://doi.org/10.1002/ecy.1957