DOI QR코드

DOI QR Code

Exogenous spermidine ameliorates tubular necrosis during cisplatin nephrotoxicity

  • Yoon, Sang Pil (Department of Anatomy, Jeju National University School of Medicine) ;
  • Kim, Jinu (Department of Anatomy, Jeju National University School of Medicine)
  • Received : 2018.03.09
  • Accepted : 2018.06.18
  • Published : 2018.09.30

Abstract

The hallmark of cisplatin-induced acute kidney injury is the necrotic cell death in the kidney proximal tubules. However, an effective approach to limit cisplatin nephrotoxicity remains unknown. Spermidine is a polyamine that protects against oxidative stress and necrosis in aged yeasts, and the present study found that exogenous spermidine markedly attenuated tubular necrosis and kidney dysfunction, but not apoptosis, during cisplatin nephrotoxicity. In addition, exogenous spermidine potently inhibited oxidative/nitrative DNA damage, poly(ADP-ribose) polymerase 1 (PARP1) activation and ATP depletion after cisplatin injection. Conversely, inhibition of ornithine decarboxylase (ODC) via siRNA transfection in vivo significantly increased DNA damage, PARP1 activation and ATP depletion, resulting in acceleration of tubular necrosis and kidney dysfunction. Finally, exogenous spermidine removed severe cisplatin injury induced by ODC inhibition. In conclusion, these data suggest that spermidine protects kidneys against cisplatin injury through DNA damage and tubular necrosis, and this finding provides a novel target to prevent acute kidney injury including nephrotoxicity.

Keywords

Acknowledgement

Supported by : Jeju National University

References

  1. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4:307-20. https://doi.org/10.1038/nrd1691
  2. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 2008;73:994-1007. https://doi.org/10.1038/sj.ki.5002786
  3. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol 2003;23:460-4. https://doi.org/10.1016/S0270-9295(03)00089-5
  4. Lieberthal W, Triaca V, Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 1996;270(4 Pt 2):F700-8.
  5. Park S, Yoon SP, Kim J. Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 2015;48:66-74. https://doi.org/10.5115/acb.2015.48.1.66
  6. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2009;296: F505-11. https://doi.org/10.1152/ajprenal.90545.2008
  7. Zhang D, Pan J, Xiang X, Liu Y, Dong G, Livingston MJ, Chen JK, Yin XM, Dong Z. Protein kinase Cdelta suppresses autophagy to induce kidney cell apoptosis in cisplatin nephrotoxicity. J Am Soc Nephrol 2017;28:1131-44. https://doi.org/10.1681/ASN.2016030337
  8. Nozaki Y, Kinoshita K, Hino S, Yano T, Niki K, Hirooka Y, Kishimoto K, Funauchi M, Matsumura I. Signaling Rho-kinase mediates inflammation and apoptosis in T cells and renal tubules in cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2015;308: F899-909. https://doi.org/10.1152/ajprenal.00362.2014
  9. Sridevi P, Nhiayi MK, Wang JY. Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatininduced nephrotoxicity. Cell Death Differ 2013;20:953-62. https://doi.org/10.1038/cdd.2013.42
  10. Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 contributes to oxidative stress through downregulation of sirtuin 3 during cisplatin nephrotoxicity. Anat Cell Biol 2016;49:165-76. https://doi.org/10.5115/acb.2016.49.3.165
  11. Kim J. Poly(ADP-ribose) polymerase activation induces high mobility group box 1 release from proximal tubular cells during cisplatin nephrotoxicity. Physiol Res 2016;65:333-40.
  12. Kim J, Long KE, Tang K, Padanilam BJ. Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int 2012;82:193-203. https://doi.org/10.1038/ki.2012.64
  13. Tristao VR, Pessoa EA, Nakamichi R, Reis LA, Batista MC, Durao Junior Mde S, Monte JC. Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity. Apoptosis 2016;21:51-9. https://doi.org/10.1007/s10495-015-1190-5
  14. Pegg AE. Functions of polyamines in mammals. J Biol Chem 2016;291:14904-12. https://doi.org/10.1074/jbc.R116.731661
  15. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Buttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Muhlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 2016;22:1428-38. https://doi.org/10.1038/nm.4222
  16. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck- Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 2009; 11:1305-14. https://doi.org/10.1038/ncb1975
  17. Kim J. Spermidine is protective against kidney ischemia and reperfusion injury through inhibiting DNA nitration and PARP1 activation. Anat Cell Biol 2017;50:200-6. https://doi.org/10.5115/acb.2017.50.3.200
  18. Kim J. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury. Arch Pharm Res 2017;40:1197-208. https://doi.org/10.1007/s12272-017-0957-3
  19. Kim J, Devalaraja-Narashimha K, Padanilam BJ. TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am J Physiol Renal Physiol 2015;308:F298-308. https://doi.org/10.1152/ajprenal.00459.2014
  20. Yoon SP, Kim J. Exogenous CGRP upregulates profibrogenic growth factors through PKC/JNK signaling pathway in kidney proximal tubular cells. Cell Biol Toxicol 2018;34:251-62. https://doi.org/10.1007/s10565-017-9399-4
  21. Magnes C, Fauland A, Gander E, Narath S, Ratzer M, Eisenberg T, Madeo F, Pieber T, Sinner F. Polyamines in biological samples: rapid and robust quantification by solid-phase extraction onlinecoupled to liquid chromatography-tandem mass spectrometry. J Chromatogr A 2014;1331:44-51. https://doi.org/10.1016/j.chroma.2013.12.061
  22. Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis. J Physiol Sci 2015;65:105-11. https://doi.org/10.1007/s12576-014-0346-3
  23. Kim J, Padanilam BJ. Renal denervation prevents long-term sequelae of ischemic renal injury. Kidney Int 2015;87:350-8. https://doi.org/10.1038/ki.2014.300
  24. Kim J, Padanilam BJ. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J Am Soc Nephrol 2013;24:229-42. https://doi.org/10.1681/ASN.2012070678
  25. Kim J, Padanilam BJ. Loss of poly(ADP-ribose) polymerase 1 attenuates renal fibrosis and inflammation during unilateral ureteral obstruction. Am J Physiol Renal Physiol 2011;301:F450-9. https://doi.org/10.1152/ajprenal.00059.2011
  26. Song H, Yoon SP, Kim J. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells. Anat Cell Biol 2016;49:79-87. https://doi.org/10.5115/acb.2016.49.2.79
  27. Lee JS, Lim JY, Kim J. Mechanical stretch induces angiotensinogen expression through PARP1 activation in kidney proximal tubular cells. In Vitro Cell Dev Biol Anim 2015;51:72-8. https://doi.org/10.1007/s11626-014-9809-3
  28. Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009;61:223-42. https://doi.org/10.1016/j.etp.2008.09.003
  29. Filipovic DM, Meng X, Reeves WB. Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol 1999;277(3 Pt 2):F428-36.
  30. Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010;39:8-24. https://doi.org/10.1016/j.molcel.2010.06.017
  31. Stachurska A, Dudkowska M, Czopek A, Manteuffel-Cymborowska M, Grzelakowska-Sztabert B. Cisplatin up-regulates the in vivo biosynthesis and degradation of renal polyamines and c-Myc expression. Biochim Biophys Acta 2004;1689:259-66. https://doi.org/10.1016/j.bbadis.2004.04.003
  32. Thompson KL, Afshari CA, Amin RP, Bertram TA, Car B, Cunningham M, Kind C, Kramer JA, Lawton M, Mirsky M, Naciff JM, Oreffo V, Pine PS, Sistare FD. Identification of platformindependent gene expression markers of cisplatin nephrotoxicity. Environ Health Perspect 2004;112:488-94. https://doi.org/10.1289/ehp.6676
  33. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, Chen X, Han J. A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol 2015;26:2647-58. https://doi.org/10.1681/ASN.2014080741
  34. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 1999;99:2467-98. https://doi.org/10.1021/cr980421n
  35. Ahmed LA, Shehata NI, Abdelkader NF, Khattab MM. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatininduced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS One 2014;9:e108889. https://doi.org/10.1371/journal.pone.0108889
  36. Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates cisplatin-induced renal injury: importance of superoxide. J Am Soc Nephrol 2001;12:2683-90.
  37. Mansour MA, Mostafa AM, Nagi MN, Khattab MM, Al-Shabanah OA. Protective effect of aminoguanidine against nephrotoxicity induced by cisplatin in normal rats. Comp Biochem Physiol C Toxicol Pharmacol 2002;132:123-8. https://doi.org/10.1016/S1532-0456(02)00062-5
  38. Mansour MA, Al-Shabanah OA, El-Khashef HA. L-arginine ameliorates kidney function and urinary bladder sensitivity in experimentally-induced renal dysfunction in rats. J Biochem Mol Biol 2003;36:373-8.
  39. Chirino YI, Hernandez-Pando R, Pedraza-Chaverri J. Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol 2004;4:20. https://doi.org/10.1186/1471-2210-4-20
  40. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014;2014:360438.
  41. Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002;181-182:219-22. https://doi.org/10.1016/S0300-483X(02)00448-1
  42. Masuda H, Tanaka T, Takahama U. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 1994;203:1175-80. https://doi.org/10.1006/bbrc.1994.2306
  43. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418:191-5. https://doi.org/10.1038/nature00858
  44. Obrosova IG, Drel VR, Pacher P, Ilnytska O, Wang ZQ, Stevens MJ, Yorek MA. Oxidative-nitrosative stress and poly(ADPribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 2005;54:3435-41. https://doi.org/10.2337/diabetes.54.12.3435
  45. Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 2005;3:221-9. https://doi.org/10.2174/1570161054368607
  46. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 1999;96:13978-82. https://doi.org/10.1073/pnas.96.24.13978
  47. Bouchard VJ, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 2003;31: 446-54. https://doi.org/10.1016/S0301-472X(03)00083-3
  48. Marton LJ, Pegg AE. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 1995;35:55-91. https://doi.org/10.1146/annurev.pa.35.040195.000415

Cited by

  1. Cyclosporin A aggravates hydrogen peroxide-induced cell death in kidney proximal tubule epithelial cells vol.52, pp.3, 2018, https://doi.org/10.5115/acb.18.192
  2. Cisplatin nephrotoxicity is induced via poly(ADP-ribose) polymerase activation in adult zebrafish and mice vol.318, pp.5, 2018, https://doi.org/10.1152/ajpregu.00130.2019