References
- AISC 341-05 (2005), Seismic Provisions for Steel Structural Buildings, American Institute of Steel Construction, Inc., Chicago.
- Ariyaratana, C. and Fahnestock, L.A. (2011), "Evaluation of buckling-restrained braced frame seismic performance considering reserve strength", Eng. Struct., 33(1), 77-89. https://doi.org/10.1016/j.engstruct.2010.09.020
- Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Am., 97(5), 1486-1501. https://doi.org/10.1785/0120060255
- BC-97 (1997), Uniform Building Code, International Council of Building Officials, USA.
- Black, C., Aiken, I.D. and Makris, N. (2002), "Component testing, stability analysis, and characterization of buckling-restrained unbonded braces (TM)", Pacific Earthquake Engineering Research Center.
- Di Sarno, L. and Elnashai, A.S. (2009) "Bracing systems for seismic retrofitting of steel frames", J. Constr. Steel Res., 65(2), 452-465. https://doi.org/10.1016/j.jcsr.2008.02.013
- Eskandari, R., Vafaei, D., Vafaei, J. and Shemshadian, M.E. (2017), "Nonlinear static and dynamic behavior of reinforced concrete steel-braced frames", Earthq. Struct., 12(2), 191-200. https://doi.org/10.12989/eas.2017.12.2.191
- Fahnestock, L.A., Ricles, J.M. and Sause, R. (2007), "Experimental evaluation of large-scale buckling-restrained braced frame", J. Struct. Eng., 133(9), 1205-1214. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1205)
- FEMA P-695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency.
- Guo, Y.L., Zhou, P., Wang, M.Z., Pi, Y.L., Bradford, M.A. and Tong, J.Z. (2017), "Experimental and numerical studies of hysteretic response of triple-truss-confined buckling-restrained braces", Eng. Struct., 148, 157-174. https://doi.org/10.1016/j.engstruct.2017.06.058
- Jalayer, F. and Cornell, C.A. (2003), "A technical framework for probability-based demand and capacity factor (DCFD) seismic formats", RMS Technical Rep. No. 43 to the PEER Center, Dept. of Civil and Environmental Engineering, Stanford Univ., Stanford.
- Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. Spectra, 22(2), 367-390. https://doi.org/10.1193/1.2192560
- Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. https://doi.org/10.12989/EAS.2017.13.6.531
- Kim, J., Park, J., Shin, S.W. and Min, K.W. (2009) "Seismic performance of tubular structures with buckling restrained braces", Struct. Des. Tall Spec. Build., 18(4), 351-370. https://doi.org/10.1002/tal.420
- Lopez, W.A. and Sabelli, R. (2004), "Seismic design of bucklingrestrained braced frames", Steel TIPS 07.2004, Structural Steel Educational Council.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "The Open System for Earthquake Engineering Simulation (OpenSEES) user command-language manual".
- Mortezaei, A., Ronagh, H.R. and Kheyroddin, A. (2010), "Seismic evaluation of FRP strengthened RC buildings subjected to nearfault ground motions having fling step", Compos. Struct., 92(5), 1200-1211. https://doi.org/10.1016/j.compstruct.2009.10.017
- Richards, P.W. and Miller, D.J. (2014), "High-yield-drift steel moment frames", Proceedings of the 10th U.S. National Conference on Earthquake Engineering, Anchorage, Alaska.
- Sheikh, H. and Massumi, A. (2014) "Effects of bracing configuration on seismic behavior of tall steel structures subjected to earthquake ground motions", Proceedings of the 10th U.S. National Conference on Earthquake Engineering, Anchorage, Alaska.
- Soleimani Amiri, F., Ghodrati Amiri, G. and Razeghi, H. (2013), "Estimation of seismic demands of steel frames subjected to near-fault earthquakes having forward directivity and comparing with pushover analysis results", Struct. Des. Tall Spec. Build., 22(13), 975-988. https://doi.org/10.1002/tal.747
- Stewart, J.P., Chiou, S.J., Bray, J.D., Graves, R.W., Somerville, P.G. and Abrahamson, N.A. (2002), "Ground motion evaluation procedures for performance-based design", Soil Dyn. Earthq. Eng., 22(9-12), 765-772. https://doi.org/10.1016/S0267-7261(02)00097-0
- Vafaei, D. and Eskandari, R. (2015), "Seismic response of mega buckling-restrained braces subjected to fling-step and forwarddirectivity near-fault ground motions", Struct. Des. Tall Spec. Build., 24(9), 672-686. https://doi.org/10.1002/tal.1205
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141
- Veismoradi, S., Amiri, G.G. and Darvishan, E. (2016), "Probabilistic seismic assessment of Buckling Restrained Braces and Yielding Brace Systems", Int. J. Steel Struct., 16(3), 831-843. https://doi.org/10.1007/s13296-015-0073-5
- Yu, X., Ji, T. and Zheng, T. (2015), "Relationships between internal forces, bracing patterns and lateral stiffnesses of a simple frame", Eng. Struct., 89, 147-161. https://doi.org/10.1016/j.engstruct.2015.01.030
- Zahiri-Hashemi, R., Kheyroddin, A. and Farhadi, B. (2013), "Effective number of mega-bracing, in order to minimize shear lag", Struct. Eng. Mech., 48(2), 173-193. https://doi.org/10.12989/sem.2013.48.2.173
- Zareian, F. and Krawinkler, H. (2007), "Assessment of probability of collapse and design for collapse safety", Earthq. Eng. Struct. Dyn., 36(13), 1901-1914. https://doi.org/10.1002/eqe.702
- Zareian, F., Krawinkler, H., Ibarra, L. and Lignos, D. (2010), "Basic concepts and performance measures in prediction of collapse of buildings under earthquake ground motions", Struct. Des. Tall Spec. Build., 19(1-2), 167-181. https://doi.org/10.1002/tal.546