References
- Akgoz, B. and Civalek, O. (2015), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301 https://doi.org/10.1016/j.compstruct.2015.08.095
- Al-Hosani, K., Fadhil, S. and El-Zafrany, A. (1999), "Fundamental solution and boundary element analysis of thick plates on Winkler foundation", Comput. Struct., 70(3), 325-336. https://doi.org/10.1016/S0045-7949(98)00171-0
- Arikoglu, A. and Ozkol, I. (2006), "Solution of differential-difference equations by using differential transform method", Appl. Math. Comput., 181(1), 153-162. https://doi.org/10.1016/j.amc.2006.01.022
- Auersch, L. (2008), "Dynamic interaction of various beams with the underlying soil-finite and infinite, half-space and Winkler models", Eur. J. Mech. A Solids, 27(5), 933-958. https://doi.org/10.1016/j.euromechsol.2008.02.001
- Azrar, L., Benamar, R. and White, R.A. (1999), "Semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part I: General theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893
- Bayat, M., Pakar, I. and Cao, M.S. (2017c), "Energy based approach for solving conservative nonlinear systems", Earthq. Struct., 13(2),131-136 https://doi.org/10.12989/EAS.2017.13.2.131
- Bayat, M. and Pakar, I. (2017a), "Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems", Struct. Eng. Mech., 61(5), 657-661. https://doi.org/10.12989/sem.2017.61.5.657
- Bayat, M., Pakar, I. and Bayat, M. (2017b), "Nonlinear vibration of multi-body systems with linear and nonlinear springs", Steel Compos. Struct., 25(4), 497-503. https://doi.org/10.12989/SCS.2017.25.4.497
- Bayat, M., Bayat, M. and Pakar, I. (2018), "Nonlinear vibration of oscillatory systems using semi-analytical approach", Struct. Eng. Mech., 65(4), 409-413 https://doi.org/10.12989/SEM.2018.65.4.409
- Ghannadiasl, A. and Mofid, M. (2015), "An analytical solution for free vibration of elastically restrained Timoshenko beam on an arbitrary variable Winkler foundation and under axial load", Lat. Am. J. Solids Struct., 12(13), 2417-2438. https://doi.org/10.1590/1679-78251504
- Gorbunov-Posadov, M.I., Malikova, T.A. and Solomin, V.I. (1973), The Design of Structures on an Elastic Foundation, Stroiizdat, Moscow, Russia.
- Gupta, U., Ansari, A., and Sharma, S. (2006), "Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation", J. Sound Vib., 297(3-5), 457-476. https://doi.org/10.1016/j.jsv.2006.01.073
- Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361
- He, G., Li, X. and Lou, R. (2016), "Nonlinear FEA of higher order beam resting on a tensionless foundation with friction", Geomech. Eng., 11(1), 95-116. https://doi.org/10.12989/gae.2016.11.1.095
- He, J.H. (2008), "Max-min approach to nonlinear oscillators", Int. J. Nonlin. Sci. Numer. Simul., 9(2), 207-210. https://doi.org/10.1515/IJNSNS.2008.9.2.207
- Kacar, A., Tan, H.T. and Kaya, M.O. (2011), "Free vibration analysis of beams on variable winkler elastic foundation by using the differential transform method", Math. Comput. Appl., 16(3), 773-783.
- Liu, Y. and Gurram, C.S. (2009), "The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam", Math. Comput. Model., 50(11-12), 1545-1552. https://doi.org/10.1016/j.mcm.2009.09.005
- Lohar, H., Mitra, A. and Sahoo, S. (2016), "Free vibration analysis of axially functionally graded linearly taper beam on elastic foundation", IOP Conf. Series Mater. Sci. Eng., 149(1), 012130. https://doi.org/10.1088/1757-899X/149/1/012130
- Mirzabeigy, A. (2014), "Semi-analytical approach for free vibration analysis of variable cross-section beams resting on elastic foundation and under axial force", Int. J. Eng. Trans. C Aspects, 27(3), 385-394.
- Motaghian, S., Mofid, M. and Alanjari, P. (2011), "Exact solution to free vibration of beams partially supported by an elastic foundation", Scientia Iranica, 18, 861-866.
- Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-62 https://doi.org/10.1016/j.compstruct.2014.09.023
- Ozis, T. and Yildirim, A. (2007), "Determination of the frequency-amplitude relation for a duffing-harmonic oscillator by the energy balance method", Comput. Math. Appl., 54(7), 1184-1187. https://doi.org/10.1016/j.camwa.2006.12.064
- Ozis, T. and Yildirim, A. (2009), "Generating the periodic solutions for forcing van der Pol oscillators by the iteration perturbation method", Nonlin. Anal. Real World Appl., 10(4), 1984-1989.
- Rabia, B., Hassaine, D., Said, M. and Hadji, L. (2016), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 10(5), 1033-1048.
- Shariyat, M. and Alipour, M.M. (2011), "Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations", Arch. Appl. Mech., 81(9), 1289-1306. https://doi.org/10.1007/s00419-010-0484-x
- Shou, D.H. (2009), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459. https://doi.org/10.1016/j.camwa.2009.03.034
- Soldatos, K. and Selvadurai, A. (1985), "Flexure of beams resting on hyperbolic elastic foundations", Int. J. Solid. Struct., 21(4), 373-388. https://doi.org/10.1016/0020-7683(85)90062-9
- Tsiatas, G.C. (2010), "Nonlinear analysis of non-uniform beams on nonlinear elastic foundation", Acta Mech., 209(1-2), 141-152. https://doi.org/10.1007/s00707-009-0174-3
- Xing, J.Z. and Wang, Y.G. (2013), "Free vibrations of a beam with elastic end restraints subject to a constant axial load", Arch. Appl. Mech., 83(2), 241-252. https://doi.org/10.1007/s00419-012-0649-x
- Xu, L. (2007), "He's parameter-expanding methods for strongly nonlinear oscillators", J. Comput. Appl. Math., 207(1), 148-154. https://doi.org/10.1016/j.cam.2006.07.020
- Ying, J., Lu, C. and Chen, W. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Zahedinejad, P. (2016), "Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment", Int. J. Struct. Stability Dyn., 16(7), 1550029. https://doi.org/10.1142/S0219455415500297
Cited by
- A Prediction Method for Acoustic Intensity Vector Field of Elastic Structure in Shallow Water Waveguide vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5389719