DOI QR코드

DOI QR Code

Induction of A Chromosome-doubled Persimmon (Diospyros kaki Thunb.) by in vitro Colchicine Treatment

기내 콜히친 처리에 의한 염색체 배가 감 식물체 유기

  • Ma, Kyeong-Bok (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Cho, Kwang-Sik (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Jung, Hae-Won (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Seo, Ho-Jin (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Kang, Sam-Seok (Pear Research Station, National Institute of Horticultural & Herbal Science)
  • 마경복 (국립원예특작과학원 배연구소) ;
  • 조광식 (국립원예특작과학원 배연구소) ;
  • 정해원 (국립원예특작과학원 배연구소) ;
  • 서호진 (국립원예특작과학원 배연구소) ;
  • 강삼석 (국립원예특작과학원 배연구소)
  • Received : 2018.06.05
  • Accepted : 2018.07.24
  • Published : 2018.10.31

Abstract

This was carried out to develop a chromosome-doubled (12x) persimmon that will be used as a crossing parent to select seedless persimmon cultivars with the change of the consumption trend recently. To obtain a chromosome-doubled (12x) persimmon, colchicine was applied at the meristem of seedlings in vitro derived from cross among hexaploid persimmon (Diopyros kaki Thunb.). These were treated with 0.03%, 0.05% and 0.1% colchicine respectively for doubling chromosome, and it was most effective at the concentration of 0.05% colchicine. After colchicine treatment, we conducted tests to elucidate conditions for inducing shoot and root development. As the result, the shoots grew best when cultivated at 1/2MS media plus 10 and $30{\mu}M$ zeatin respectively, and the roots grew best when cultivated at 1/2MS media after dipping for 5 seconds at 10 mM NAA+5% DMSO. We also compared seedlings that have chromosome (6x) do not doubled and crossing parents (6x) and chromosome-doubled seedlings (12x). As the result, these chromosome-doubled seedlings (12x) showed lower stomatal density and larger stomatal size.

본 시험은 최근 소비트렌드의 변화에 따라 소비자들이 쉽고 편하게 먹을 수 있는 씨 없는 감 개발의 선결조건인 배수체(12x) 교배 모본을 선발하기 위해 수행되었다. 염색체가 배가된 배수체 개체를 얻기 위해 교배 종자의 배배양을 통해 얻은 유묘의 생장점에 콜히친을 처리하였다. 콜히친을 0.03, 0.05%, 0.1% 등 3수준으로 처리한 결과, 0.05%에서 염색체가 배가된 개체의 발생률이 가장 높았다. 콜히친 처리 후 우리는 신초와 뿌리의 발생을 유도하기 위한 배지 조건을 구명하는 시험을 수행하였다. 신초는 $10{\mu}M$, 30 zeatin이 각각 첨가된 1/2MS배지에서 생장이 잘 되었으며, 뿌리는 10 mM NAA+5% DMSO에 5초 동안 침지 후 1/2MS배지에 배양하였을 때 생장이 잘 되었다. 또한 콜히친 처리에 의해 염색체가 배가된 개체(12x)의 기공 특성을 조사한 결과 염색체가 배가된 개체(12x)는 염색체 배가가 되지 않은 개체(6x)와 교배친(6x) 보다 잎의 공변세포 밀도는 더 적고, 크기는 더 큰 경향이었다.

Keywords

References

  1. Barrett, H.C. 1974. Colchicine-induced polyploidy in Citrus. Bot. Gaz. 135:29-41. https://doi.org/10.1086/336726
  2. Chijiwa, H., K. Minoru, H. Nobuyuki, S. Mikio and F. Hiroyuki. 2011. Induction of dodecaploid persimmons (Diospyros kaki Thunb.) by in vitro colchicine treatment and their growth characteristics. Hort. Res. 10:309-314 (in Japanese). https://doi.org/10.2503/hrj.10.309
  3. Cho, M.D., H.S. Park and Y.G. Kim. 2000. Changes of fruit structure and sugar contents during the fruit growth and development in 'Yumyeong' peach [Prunus perisica (L.) Batsch]. Kor. J. Hort. Sci. Technol. 18:353-359.
  4. Gmitter, Jr., F.G. and X. Ling. 1991. Embryogenesis in vitro and nonchimeric tetraploid plant recovery from undeveloped Citrus ovules treated with colchicine. J. Amer. Soc. Hort. Sci. 116:317-321. https://doi.org/10.21273/JASHS.116.2.317
  5. Jaskani, M.J., S.W. Kwon, G.C. Koh, Y.C. Hub and B.R. Ko. 2004. Induction and characterization of tetraploid watermelon. J. Kor. Soc. Hort. Sci. 45:60-65.
  6. Korea Rural Economic Institute (KREI). 2018. http://aglook.krei.re.kr/
  7. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  8. Oh, S.A., K.H. Min, Y.S. Choi, S.B. Park, Y.C. Kim and S.M. Cho. 2015. Development of tetraploid watermelon using chromosome doubling reagent treatments. Korean J. Plant. Res. 28(5):656-664. https://doi.org/10.7732/kjpr.2015.28.5.656
  9. Ohgawara, T., S. Kobayashi, E. Ohgawara, H. Uchimiya and S. Ishii. 1985. Somatic hybrid plants obtained by protoplast fusion between Citurs sinensis and Poncirus trifoliate. Theor. Appl. Genet. 71:1-4. https://doi.org/10.1007/BF00278245
  10. Sugiura, A., T. Ohkuma, Y.A. Choi, R. Tao and M. Tamura. 2000. Production of nonaploid (2n=9x) Japanese persimmons (Diospyros kaki) by pollination with unreduced (2n=6x) pollen and embryo rescue culture. J. Amer. Soc. Hort. Sci. 125:609-614. https://doi.org/10.21273/JASHS.125.5.609
  11. Tamura, M., R. Tao and A. Sugiura. 1995. Regeneration of somatic hybrids from electrofused protoplasts of Japanese persimmon (Diospyros kaki L.). Plant Sci. 108:101-107. https://doi.org/10.1016/0168-9452(95)04129-I
  12. Tao, R., H. Murayama, K. Moriguchi and A. Sugiura. 1988. Plant regeneration form callus cultures derived from persimmons (Diospyros kaki) by pollination with unreduced (2n=6x) pollen and embryo rescue culture. J. Amer. Soc. Hort. Sci. 125:609-614.
  13. Wu, J.H. and P. Mooney. 2002. Autotetraploid tangor plant regeneration from in vitro Citrus somatic embryogenic callus treated with colchicine. Plant Cell Tiss. Org. Cult. 70:99-104. https://doi.org/10.1023/A:1016029829649
  14. Yamada, A. and R. Tao. 2007. Controlled pollination with sorted reduced and unreduced pollen grains reveals unreduced embryo sac formation in Diospyros kaki Thunb. 'Fujiwaragosho'. J. Japan. Soc. Hort. Sci. 76:133-138. https://doi.org/10.2503/jjshs.76.133
  15. Zhuang, D.H., A. Kitajima, M. Ishida and Y. Sobajima. 1990. Chromosome numbers of Diospyros kaki cultivars. J. Japan. Soc. Hort. Sci. 59:289-297 (in Japanese with English abstract). https://doi.org/10.2503/jjshs.59.289