DOI QR코드

DOI QR Code

생물학자의 탐구에 기반한 메커니즘 추론 모델 개발

Development of a Mechanistic Reasoning Model Based on Biologist's Inquiries

  • 투고 : 2018.01.08
  • 심사 : 2018.09.03
  • 발행 : 2018.10.31

초록

이 연구의 목적은 파브르의 탐구 과정에서 나타난 메커니즘 추론을 분석하고, 분석 결과에 기반하여 메커니즘 추론 모델을 개발하는 것이다. 이를 위해 Russ et al.(2008)의 분석틀을 수정 보완한 메커니즘 추론 분석틀로 "파브르 곤충기 1~10" 가운데 추론요소가 등장하는 30개의 챕터를 분석하였다. 분석결과 첫째, 파브르의 탐구 과정에서 나타난 메커니즘 추론의 하위 과정 요소는 선지식확인, 대상속성확인, 시작조건확인, 활동확인 등의 과정이 반복적으로 일어났다. 뿐만 아니라 이 메커니즘 추론의 과정 요소들의 순서는 탐구 주제, 의문 유형, 선지식이나 주어진 상황 등에 따라 다르게 나타났으며, 비선형적이고 반복적인 형태로 나타났다. 둘째, 메커니즘 추론의 과정 요소가 나타난 순서에 기반하여 메커니즘 추론 모델을 개발하였다. 파브르의 탐구 과정 분석을 통해 제안되는 메커니즘 추론 모델은 실체확인형 메커니즘 추론 모델(MIE), 활동확인형 메커니즘 추론 모델(MIA), 실체 속성확인형 메커니즘 추론 모델(MIP) 3가지였다. 이러한 결과는 인과 메커니즘을 밝히고자 하는 탐구를 수행하는 학생들에게 교사가 Why 뿐만 아니라 How, If, What과 같은 다양한 발문을 통해 탐구를 진행하도록 유도할 수 있음을 시사해준다. 또한 교사는 자연 현상의 기저에 존재하는 여러 실체들을 인식하는 메커니즘적 이해가 요구되며 학생들에게 다양한 가설을 생성하도록 하는 기회를 제공해야함을 시사해 준다.

The purpose of this study is to analyze mechanistic reasoning in Fabre's inquires and to develop mechanistic reasoning model. To analyze the order of the process elements in mechanistic reasoning, 30 chapters were selected in book. Inquiries were analyzed through a framework which is based on Russ et al. (2008). The nine process elements of mechanistic reasoning that was presented in Fabre's inquires were as follows: Describing the Target Phenomenon, Identifying prior Knowledge, Identifying Properties of Objects, Identifying Setup Conditions, Identifying Activities, Conjecturing Entities, Identifying Properties of Entities, Identifying Entities, and Organization of Entities. The order of process elements of mechanistic reasoning was affected by inquiry's subject, types of question, prior knowledge and situation. Three mechanistic reasoning models based on the process elements of mechanistic reasoning were developed: Mechanistic reasoning model for Identifying Entities(MIE), Mechanistic reasoning model for Identifying Activities(MIA), and Mechanistic reasoning model for Identifying Properties of entities (MIP). Science teacher can help students to use the questions of not only "why" but also "How", "If", "What", when students identify entities or generate hypotheses. Also science teacher should be required to understand mechanistic reasoning to give students opportunities to generate diverse hypotheses. If students can't conjecture entities easily, MIA and MIP would be helpful for students.

키워드

참고문헌

  1. Ahn, W., & Kalish, C. W. (2000). The role of mechanism belief in causal reasoning. In F. Keil & R. A. Wilson (Eds.), Explanation and Cognition (pp. 199-225). Cambridge, MA: MIT Press.
  2. Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Science, 36(2), 421-441. https://doi.org/10.1016/j.shpsc.2005.03.010
  3. Bogen, J. (2008). Causally productive activities. Studies in History and Philosophy of Science Part A, 39(1), 112-123. https://doi.org/10.1016/j.shpsa.2007.11.009
  4. Bolger, M. S., Kobiela, M., Weinberg, P. J., & Lehrer, R. (2012). Children's mechanistic reasoning. Cognition and Instruction, 30(2), 170-206. https://doi.org/10.1080/07370008.2012.661815
  5. Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J. H. S., & Westerhoff, H. V. (2007). Systems biology:Philosophical foundations. Amsterdam: Elsevier.
  6. Braben, D. W. (1994). To be a scientist. Oxford: Oxford University Press.
  7. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
  8. Cho, H. (2009). The Analysis of the Astronomers' Research Process and Reasoning. Korea National Unerversity of Education, Doctorial dissertation. Chung-Buk.
  9. Craver, F. F. (2007). Explaning the brain. NY: Oxford University Press.
  10. Darden, L. (2002). Strategies for discovering mechanisms: Schema instantiation, modular subassembly, forward/backward chaining. Philosophy of Science, 69(3), 354-365. https://doi.org/10.1086/341858
  11. Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution (Cambridge studies in philosophy and biology). Cambridge, NY: Cambridge University Press.
  12. Dickes, A. C., Sengupta, P., Farris, A. V., & Basu, S. (2016). Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models. Science Education, 100(4), 734-776. https://doi.org/10.1002/sce.21217
  13. Fabre, J. H. (1989). Souvenirs Entomologiques(Etudes sur I'instinct et les moeurs des insectes). Bouqiuns : Robert Laffont Press. In Kim. J (Ed), Souvenirs entomologiques 1-10. Seoul: hyeonamsa.
  14. Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(S3), S342-S353. https://doi.org/10.1086/341857
  15. Glennan, S. (2005). Modeling mechanisms. Studies in History and Philosophy of Biological and Biomedical Science, 36(2), 443-464. https://doi.org/10.1016/j.shpsc.2005.03.011
  16. Glymour, C. (2003). Learning, prediction and causal bayes nets. Trends in Cognitive Sciences, 7(1), 43-48. https://doi.org/10.1016/S1364-6613(02)00009-8
  17. Gopnik, A., Sobel, D. M., & Glymour, C. (2001). Causal learning mechanisms in very young children: Two-, three-, and four-year-olds infer causal relations from patterns of variation and covariation. Developmental Psychology, 37(5), 620-629. https://doi.org/10.1037/0012-1649.37.5.620
  18. Hung W., & Jonassen, D. H. (2006). Conceptual understanding of causal reasoning in physics. International Journal of Science Education, 28(13), 1601-1621. https://doi.org/10.1080/09500690600560902
  19. Keil, F., Levin, D., Gutheil, G. and Richman, B. (1999). Explanation, cause and mechanism: The case of contagion. In Medin, D. and Atran, S. (Eds.), Folkbiology, pp. 285-320. MIT Press, Cambridge, MA.
  20. Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, MA: MIT Press.
  21. Kown, Y., Yang, I., Chung, W. (2000). An Explorative Analysis of Hypothesis-Generation by Pre-service Science Teachers. Journal of the Korean Association for Science Education, 20(1), 29-42.
  22. Lawson, A. E. (1995). Science teaching and the development of thinking (pp. 139-147). Belmont, CA: Wadsworth Publishing Company.
  23. Lee, H., Yang, I., Kwon, Y. (2009). A Study on the Abductive Thinking in the Processes of Bilogists' Science Knowledge Generation. The Korean Journal of Biology Educaytion, 36(2), 189-202.
  24. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1-25. https://doi.org/10.1086/392759
  25. Magnani, L. (2004). Model-based and manipulative abduction in science. Foundation of Science, 9(3), 219-247. https://doi.org/10.1023/B:FODA.0000042841.18507.22
  26. Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive Models of Science (pp. 5-22). Minneapolis, MN: University of Minnesota Press.
  27. Reiff, R., Harwood, W. S., & Phillipson, T. (2002). A scientific method based upon research scientists' conception of scientific inquiry (pp. 1-24). In proceedings of the annual international conference of the Association for the Education of Teachers in Science, Charlotte, NC.
  28. Russ, R. S., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A Framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499-525. https://doi.org/10.1002/sce.20264
  29. Schauble, L. (1996). The development of scientific reasoning in knowledgerich contexts. Development Psychology, 32(1), 102-119. https://doi.org/10.1037/0012-1649.32.1.102
  30. Thagard. P. (1999). How scientists explain disease. Princeton, NJ: Prinston University Press.
  31. Van Mil, M. H. W., Boerwinkel, D. J., & Waarlo, A. J. (2013). Modelling molecular mechanisms: A framework of scientific reasoning to construct molecular-level explanations for cellular behaviour. Science & Education, 22(1), 93-118. https://doi.org/10.1007/s11191-011-9379-7
  32. Van Mil, M. H., Postma, P. A., Boerwinkel, D. J., Klaassen, K., & Waarlo, A. J. (2016). Molecular Mechanistic Reasoning: Toward Bridging the Gap Between the Molecular and Cellular Levels in Life Science Education. Science Education, 100(3), 517-585. https://doi.org/10.1002/sce.21215
  33. Yang, I., Jeong, J., Jown, Y., Jeong, J., Hur, M., Oh, C. (2006). An Intensive Inteview Study on the Process of Scientists' Science Knowledge Generation. Journal of the Korean Association for Science Education, 26(1), 88-96.
  34. Yang, I., Oh, C., & Cho, H. (2007). Development of the scientific inquiry process model based on scientists' practical work. Journal of Korea Association for Research in Science Education, 27(8), 724-742.
  35. Zeineddin, A., & Abd-El-Khalick, F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students. Journal of Research in Science Teaching, 47(9), 1064-1093. https://doi.org/10.1002/tea.20368