DOI QR코드

DOI QR Code

Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line

  • Supraja, Nookala (Department of Biotechnology, Thiruvalluvar University) ;
  • Dhivya, J. (Department of Biotechnology, Thiruvalluvar University) ;
  • Prasad, T.N.V.K.V. (Nanotechnology Laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, Acharya N G Ranga Agricultural University) ;
  • David, Ernest (Department of Biotechnology, Thiruvalluvar University)
  • 투고 : 2016.11.15
  • 심사 : 2018.06.21
  • 발행 : 2018.06.25

초록

In the present study silver nanoparticles (AgNPs) were successfully synthesized using aqueous extract of Sargassum muticum. The aqueous extract (10%) treated with 1 mM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs was recorded at 360 nm using UV-Visible spectrophotometer. The molecules involved in the formation of AgNPs were identified by Fourier transform infrared spectroscopy (FT-IR), surface morphology was studied by using scanning electron microscopy (SEM), SEM micrograph clearly revealed the size of the AgNPs was in the range of 40-65 nm with spherical, hexagonal in shape and poly-dispersed nature, and X-ray diffraction spectroscopy (XRD) was used to determine the crystalline structure. High positive Zeta potential (36.5 mV) of formed AgNPs indicates the stability and XRD pattern revealed the crystal structure of the AgNPs by showing the Bragg's peaks corresponding to (111), (200), (311) and (222) planes of face-centered cubic crystal phase of silver. The synthesized AgNPs exhibited effective anticancerous activity (at doses 25 and $50{\mu}g/ml$ of AgNPs) against Breast cancer cell line (MCF7).

키워드

참고문헌

  1. Asadi, A. (2014), "Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment", Appl. Nanosci., 4, 455-460. https://doi.org/10.1007/s13204-013-0219-8
  2. Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P. and Wiesner, M.R. (2009), "Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective", Nat. Nanotechnol., 4, 634-641. https://doi.org/10.1038/nnano.2009.242
  3. Azizi, S., Ahmed, M., Mahdavi, M. and Abdolmohammadi, S. (2013), "Preparation, characterization and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystals nanocomposites", Antimicrobial. Nanocompos. Bio Resource, 8(2), 1841-1851.
  4. Behera, T., Swain, P., Rangacharulu, P.V. and Samanta, M. (2013), "Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H", Appl. Nanosci., 4, 687-694.
  5. Con, T.H. and Loan, D.K. (2011), "Preparation of silver nano-particles and use as a material for water sterilization", Environ. Asia, 4, 62-66.
  6. Dahl, J.A., Maddux, B.L. and Hutchison, J.E. (2007), "Toward greener nanosynthesis", Chem. Rev., 107, 2228-2269. https://doi.org/10.1021/cr050943k
  7. Dash, S.S., Majumdar, R., Sikder, A.K., Bag, B.G. and Patra, B.K. (2014), "Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction", Appl. Nanosci., 4, 485-490. https://doi.org/10.1007/s13204-013-0223-z
  8. El Gamal, A.A. (2010), "Biological importance of marine algae", (2010), Saudi Pharm. J., 18, 1-25. https://doi.org/10.1016/j.jsps.2009.12.001
  9. Elumalai, E.K., Prasad, T.N.V.K.V., Kambala, V., Nagajyothi, P.C. and David, E. (2010), "Green synthesis of silver nanoparticle using Euphorbia hirta L. and their antifungal activities", Arch. Appl. Sci. Res., 2, 76-81.
  10. Esumi, K., Tano, T., Torigoe, K. and Meguro, K. (1990), "Preparation and characterization of bimetallic palladium- copper colloids by thermal decomposition of their acetate compounds in organic solvents", Chem. Mater., 2, 564-567. https://doi.org/10.1021/cm00011a019
  11. Goia, D. and Matijevic, E. (1998), "Preparation of monodispersed metal particles", New J. Chem., 22, 1203-1215. https://doi.org/10.1039/a709236i
  12. He, Y., Wan, T.J.M. and Tokunaga, T. (2008), "Kinetic stability of hematite nanoparticles of the effect of particle sizes", J. Nanoparticle Res., 10, 321-332. https://doi.org/10.1007/s11051-007-9255-1
  13. Khan, M., Choi, J., Lee, M., Kim, E. and Nam, T. (2008), "Anti-inflammatory activities of methanol extracts from various seaweed species", J. Environ. Biol., 29, 465-469.
  14. Khlebtsov, N.G. and Dykman, L.A. (2010), "Optical properties and biomedical applications of plasmonic nanoparticles", J. Quant. Spectrosc. Radiat. Transfer., 111, 1-35. https://doi.org/10.1016/j.jqsrt.2009.07.012
  15. Li, N., Bai, X., Zhang, S., Gao, Y.A., Zheng, L., Zhang, J. and Ma, H. (2008), "Synthesis of silver nanoparticles in ionic liquid by a simple effective electrochemical method", J. Dispers. Sci. Technol., 29, 1059-1061. https://doi.org/10.1080/01932690701815606
  16. Madhiyazhagan, P., Murugan, K., Kumar, A.N., Nataraj, T., Dinesh, D., Panneerselvam, C., Subramaniam, J., Mahesh Kumar, P., Suresh, U., Roni, M., Nicoletti, M., Alarfaj, A.A., Higuchi, M.A., Munusamy, A. and Benelli G. (2015), "Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogen", Parasitol. Res., 114, 4305-4317. https://doi.org/10.1007/s00436-015-4671-0
  17. Mahasneh, A.M. (2013), "Bionanotechnology: the novel nanoparticles based approach for disease therapy", Jordan J. Biol. Sci., 6, 246-251. https://doi.org/10.12816/0001621
  18. Miyashita, K. (2009), "The carotenoid fucoxanthin from brown seaweed affects obesity", Lipid Technol., 21, 186-190. https://doi.org/10.1002/lite.200900040
  19. Moghimi-Rad, J., Isfahani, T.D., Hadi, I., Ghalamdaran, S., Sabbaghzadeh, J. and Sharif, M. (2011), "Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation", Appl. Nanosci., 1, 27-35. https://doi.org/10.1007/s13204-011-0004-5
  20. Mohamed, S., Hashim, S.N. and Rahman, H.A. (2012), "Seaweeds: A sustainable functional food for complementary and alternative therapy", Trends Food Sci. Technol., 23, 83-96. https://doi.org/10.1016/j.tifs.2011.09.001
  21. Monks, A., Scudiero, D. and Skehan, P. (1991), "Feasibility of high flux anticancer drug screen using a diverse panel of cultured human tumour cell lines", J. Nal. Cancer Inst., 83, 757-766. https://doi.org/10.1093/jnci/83.11.757
  22. Mosmann, T. (1983), "Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays", J. Immunol. Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  23. Muhsin, T.M. and Hachim, A.K. (2014), "Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria", World J. Microb. Biot., 30, 2081-2090. https://doi.org/10.1007/s11274-014-1634-z
  24. Muruganandam, S., Anbalagan, G. and Murugadoss, G. (2014), "Optical, electrochemical and thermal properties of Co2+ doped CdS nanoparticles using polyvinylpyrrolidone", Appl. Nanosci. DOI: 10. 1007/s13204-014-0313-6
  25. Nallamuthu, I., Parthasarathi, A. and Khanum, F. (2012), "Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties", Int. Current Pharmaceut. J., 2(12), 202-207.
  26. Namvar, F., Suhaila, M., Gasemi Fard, S. and Behravan, J. (2012), "Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction", Food Chem., 130, 376-382. https://doi.org/10.1016/j.foodchem.2011.07.054
  27. Nishino, T., Fukuda, Nagumo, T., Fujihara, M. and Kaji, E. (1999), "Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome", Thromb. Res., 96, 37-49. https://doi.org/10.1016/S0049-3848(99)00060-2
  28. Pal, J., Deb, M.K. and Deshmukh, D.K. (2014), "Microwave-assisted synthesis of silver nanoparticles using benzo-18- crown-6 as reducing and stabilizing agent", Appl. Nanosci., 4, 507-510. https://doi.org/10.1007/s13204-013-0229-6
  29. Parashar, V., Parashar, R., Sharma, B. and Pandey, A.C. (2009), "Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization", Dig. J. Nanomater. Bios., 4, 45-50.
  30. Paul, K., Bag, B.G. and Samanta, K. (2014), "Green coconut (Cocos nucifera Linn.) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis", Appl. Nanosci., 4, 769-775. https://doi.org/10.1007/s13204-013-0261-6
  31. Perez, G.R.M., Zavala, S.M., Perez, G.S. and Perez, G.C. (1998), "Antidiabetic effect of compounds isolated from plants", Phytomedicine, 5, 55-75. https://doi.org/10.1016/S0944-7113(98)80060-3
  32. Prabha, S., Supraja, N., Garud, M. and Prasad, T.N.V.K.V. (2014), "Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles", J. Nanostruct. Chem., 4(4), 161-170. https://doi.org/10.1007/s40097-014-0132-z
  33. Poornima, S. and Valivittan, K. (2016), "Synthesis, characterization, Antimicrobial activity and Anticancerous efficacy (HeLa cell lines) by Sargassum muticum mediated synthesized silver nanoparticles", Int. J. Current Res. Multidiscipl., 1(6), 30-44.
  34. Rajeshkumar, S., Malarkodi, C. and Vanaja, M. (2016), "Anticancer and enhanced antimicrobial activity of biosynthesized silver nanoparticles against clinical pathogens", J. Mol. Struct., 1116, 165-173. https://doi.org/10.1016/j.molstruc.2016.03.044
  35. Schabes-Retchkiman, P.S., Canizal, G., Herrera-Becerra, R., Zorrilla, C., Liu, H.B. and Ascencio, J.A. (2006), "Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles", Opt. Mater., 29, 95-99. https://doi.org/10.1016/j.optmat.2006.03.014
  36. Seshadri, S., Prakash, A. and Kowshik, M. (2012), "Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8", Bull. Mater. Sci., 35, 1201-1205. https://doi.org/10.1007/s12034-012-0417-0
  37. Shahriari, E., Yunus, W.M.M., Talib, Z.A. and Saion, E. (2011), "Thermalinduced non-linearity of Ag nanofluid prepared using cradiation method", Sains Malaysiana, 40, 13-15.
  38. Supraja, N., Prasad, T.N.V.K.V. and Giridhara Krishna, T. (2015), "Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles", Appl. Nanosci., 6, 581-590.
  39. Supraja, N., Prasad, T.N.V.K.V., Soundariya, M. and Babujanarthanam, R. (2016), "Synthesis, characterization and dose dependent antimicrobial and anticancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2) cell line", AIMS Bioengineering, 3(4), 425-440. https://doi.org/10.3934/bioeng.2016.4.425
  40. Suresh, S. (2014), "Studies on the dielectric properties of CdS nanoparticles", Appl. Nanosci., 4, 325-329. https://doi.org/10.1007/s13204-013-0209-x
  41. Taleb, A., Petit, C. and Pileni, M.P. (1997), "Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization", Chem. Mater., 9, 950-959. https://doi.org/10.1021/cm960513y
  42. Vankar, P.S. and Shukla, D. (2012), "Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric", Appl. Nanosci., 2, 163-168. https://doi.org/10.1007/s13204-011-0051-y
  43. Venkatesan, P. and Santhanalakshmi, J. (2014), "Synthesis, characterization and catalytic activity of gold and silver nanoparticles in the biosensor application", J. Exp. Nanosci., 9, 293-298. https://doi.org/10.1080/17458080.2012.656711
  44. Wada, K., Nakamura, K. and Tamai, Y. (2011), "Seaweed intake and blood pressure levels in healthy preschool Japanese children", Nutr. J,. 10, 83-88. https://doi.org/10.1186/1475-2891-10-83
  45. Zuercher, A.W., Fritsche, R., Corthesy, B. and Mercenier, A. (2006), "Food products and allergy development, prevention and treatment", Curr. Opin. Biotechnol, 17, 198-203. https://doi.org/10.1016/j.copbio.2006.01.010

피인용 문헌

  1. Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.077
  2. Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.253
  3. Cytotoxicity against human breast carcinoma cells of silver nanoparticles biosynthesized using Capsosiphon fulvescens extract vol.44, pp.4, 2018, https://doi.org/10.1007/s00449-020-02498-z
  4. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action vol.13, pp.17, 2018, https://doi.org/10.3390/polym13172870