DOI QR코드

DOI QR Code

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad (Mechanical Engineering department, faculty of engineering, Imam Khomeini International University) ;
  • Barati, Mohammad Reza (Aerospace Engineering Department & Center of Excellence in Computational Aerospace, Amirkabir University of Technology)
  • Received : 2016.09.16
  • Accepted : 2017.08.17
  • Published : 2018.06.25

Abstract

An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.

Keywords

References

  1. Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin-Wall. Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013
  2. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimensional Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  3. Dehrouyeh-Semnani, A.M. and Nikkhah-Bahrami, M. (2015), "The influence of size-dependent shear deformation on mechanical behavior of microstructures-dependent beam based on modified couple stress theory", Compos. Struct., 123, 325-336. https://doi.org/10.1016/j.compstruct.2014.12.038
  4. Doroushi, A., Eslami, M.R. and Komeili, A. (2011), "Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory", J. Intell. Mater. Syst. Struct., 22(3), 231-243. https://doi.org/10.1177/1045389X11398162
  5. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  6. Ebrahimi, F. and Barati, M.R. (2016b), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  7. Ebrahimi, F. and Barati, M.R. (2016c), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5
  8. Ebrahimi, F. and Barati, M.R. (2016d), "Magnetic field effects on buckling behavior of smart sizedependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  9. Ebrahimi, F. and Barati, M.R. (2016e), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 1-13.
  10. Ebrahimi, F. and Barati, M.R. (2016f), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  11. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
  12. Ebrahimi, F. and Hashemi, M. (2016), "On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(10), 1903-1916. https://doi.org/10.1177/0954410015619647
  13. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperaturedependent FGM beams with porosities", J. Eng., 2016.
  14. Ebrahimia, F. and Mokhtaria, M. (2015a), "Semi-analytical vibration characteristics of rotating Timoshenko beams made of functionally graded materials", Latin Am. J. Solids Struct., 12(7), 1319-1339. https://doi.org/10.1590/1679-78251446
  15. Ebrahimi, F. and Mokhtari, M. (2015b), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7
  16. Ebrahimi, F. and Mokhtari, M. (2015c), "Vibration analysis of spinning exponentially functionally graded Timoshenko beams based on differential transform method", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(14), 2559-2571. https://doi.org/10.1177/0954410015580801
  17. Ebrahimi, F. and Mokhtari, M. (2016), "Free vibration analysis of a rotating Mori-Tanaka-based functionally graded beam via differential transformation method", Arab. J. Sci. Eng., 41(2), 577-590. https://doi.org/10.1007/s13369-015-1689-7
  18. Ebrahimi, F. and Salari, E. (2015a), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105(2), 151-181.
  19. Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  20. Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
  21. Ebrahimi, F. and Jafari, A. (2016a), "Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory", Adv. Mater. Res., Int. J., 5(4), 279-298.
  22. Ebrahimi, F. and Jafari, A. (2016b), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., Int. J., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343
  23. Ebrahimi, F. and Jafari, A. (2017), "A four-variable refined shear-deformation beam theory for thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 1-13.
  24. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  25. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  26. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016b), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  27. Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position", Arab. J. Sci. Eng., 42(5), 1865-1881. https://doi.org/10.1007/s13369-016-2348-3
  28. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  29. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
  30. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
  31. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  32. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  33. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  34. Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mech., 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z
  35. Kiani, Y., Rezaei, M., Taheri, S. and Eslami, M.R. (2011), "Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams", Int. J. Mech. Mater. Des., 7(3), 185-197. https://doi.org/10.1007/s10999-011-9158-2
  36. Komijani, M., Kiani, Y., Esfahani, S.E. and Eslami, M.R. (2013), "Vibration of thermo-electrically postbuckled rectangular functionally graded piezoelectric beams", Compos. Struct., 98, 143-152. https://doi.org/10.1016/j.compstruct.2012.10.047
  37. Komijani, M., Reddy, J.N. and Eslami, M.R. (2014), "Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators", J. Mech. Phys. Solids, 63, 214-227. https://doi.org/10.1016/j.jmps.2013.09.008
  38. Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams", Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010
  39. Li, Y.S., Feng, W.J. and Cai, Z.Y. (2014), "Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory", Compos. Struct., 115, 41-50. https://doi.org/10.1016/j.compstruct.2014.04.005
  40. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
  41. Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
  42. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  43. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  44. Sahmani, S. and Bahrami, M. (2015), "Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory", J. Mech. Sci. Technol., 29(1), 325-333. https://doi.org/10.1007/s12206-014-1239-3
  45. Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
  46. Shegokar, N.L. and Lal, A. (2014), "Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties", Meccanica, 49(5), 1039-1068. https://doi.org/10.1007/s11012-013-9852-2
  47. Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever beam under load", Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5
  48. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  49. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
  50. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(1), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  51. Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006
  52. Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784. https://doi.org/10.1088/0964-1726/16/3/028
  53. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693

Cited by

  1. Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures vol.31, pp.4, 2018, https://doi.org/10.12989/scs.2019.31.4.387
  2. Instability analysis of bi-axial micro-scanner under electromagnetic actuation including small scale and damping effects vol.26, pp.8, 2020, https://doi.org/10.1007/s00542-020-04802-z