DOI QR코드

DOI QR Code

Modeling, Analysis, and Enhanced Control of Modular Multilevel Converters with Asymmetric Arm Impedance for HVDC Applications

  • Dong, Peng (Wind Power Research Center, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University) ;
  • Lyu, Jing (Wind Power Research Center, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University) ;
  • Cai, Xu (Wind Power Research Center, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University)
  • Received : 2018.07.06
  • Accepted : 2018.09.06
  • Published : 2018.11.20

Abstract

Under the conventional control strategy, the asymmetry of arm impedances may result in the poor operating performance of modular multilevel converters (MMCs). For example, fundamental frequency oscillation and double frequency components may occur in the dc and ac sides, respectively; and submodule (SM) capacitor voltages among the arms may not be balanced. This study presents an enhanced control strategy to deal with these problems. A mathematical model of an MMC with asymmetric arm impedance is first established. The causes for the above phenomena are analyzed on the basis of the model. Subsequently, an enhanced current control with five integrated proportional integral resonant regulators is designed to protect the ac and dc terminal behavior of converters from asymmetric arm impedances. Furthermore, an enhanced capacitor voltage control is designed to balance the capacitor voltage among the arms with high efficiency and to decouple the ac side control, dc side control, and capacitor voltage balance control among the arms. The accuracy of the theoretical analysis and the effectiveness of the proposed enhanced control strategy are verified through simulation and experimental results.

Keywords

References

  1. M. A. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, "Circuit topologies, modeling, control schemes, Trans. Power Electron, Vol. 30, No. 1, pp. 4-17, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2310127
  2. S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, "Operation, control, and applications of the modular multilevel converter: A review," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 37-53 Jan. 2015. https://doi.org/10.1109/TPEL.2014.2309937
  3. A. Dekka, B. Wu, R. L. Fuentes, M. Perez, and N. R. Zargari, "Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 5, No. 4, pp. 1631-1656, Dec. 2017. https://doi.org/10.1109/JESTPE.2017.2742938
  4. A. Nami, J. Liang, F. Dijkhuizen, and G. Demetriades, "Modular multileve converters for HVDC applications: Review on converter cells and functionalities," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 18-36, Jan, 2015. https://doi.org/10.1109/TPEL.2014.2327641
  5. R. Marquardt, "Modular multilevel converter: Impact on future applications and semiconductors," Power Electronic Components and their Applications 2017; 7. ETG-Symposium, pp. 1-10, Apr. 2017.
  6. J. Kolb, F. Kammerer, M. Gommeringer, and M. Braun, “Cascaded control system of the modular multilevel converter for feeding variable-speed drives,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 349-357, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2299894
  7. A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," IEEE Power Tech Conference, pp. 23-26, 2003.
  8. H. M. Pirouz, M. T. Bina, and K. Kanzi, "A new approach to the modulation and DC-link balancing strategy of modular multilevel AC/AC converters," 2005 International Conference on Power Electronics and Drives Systems, pp. 1503-1507, 2005.
  9. L. Harnefors, A. Antonopoulos, S. Norrga, L. Angquist, and H. P. Nee, “Dynamic analysis of modular multilevel converters,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2526-2537, Apr. 2013. https://doi.org/10.1109/TIE.2012.2194974
  10. D. C. Ludois and G. Venkataramanan, “Simplified terminal behavioral model for a modular multilevel converter,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1622-1631, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2268856
  11. R. Lizana, M. Perez, S. Bernet, J. Espinoza, and J. Rodriguez, "Control of arm capacitor voltages in modular multilevel converters," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1774-1784, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2426183
  12. G. Bergna, J. A. Suul, and S. D'Arco, "State-space modelling of modular multilevel converters for constant variables in steady-state," IEEE 17th Workshop on Control and Modeling for Power Electronics, pp. 1-9, 2016.
  13. A. Jamshidifar and D. Jovcic, “Small-signal dynamic dq model of modular multilevel converter for system studies,” IEEE Trans. Power Del., Vol. 31, No. 1, pp. 191-199, Feb. 2016. https://doi.org/10.1109/TPWRD.2015.2478489
  14. G. Bergna-Diaz, Freytes, X. Guillaud, J. A. Suul, S. D'Arco and J. A. Suul, “Generalized voltage-based statespace modeling of modular multilevel converters with constant equilibrium in steady state,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 6 , No. 2, pp. 707-725, Jun. 2018. https://doi.org/10.1109/JESTPE.2018.2793159
  15. M. Hagiwara and H. Akagi, "Control and analysis of modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)," IEEE Trans. Power Electron., Vol. 26, No. 6, pp. 1649-1658, Jun. 2011. https://doi.org/10.1109/TPEL.2010.2089065
  16. X. She and A. Huang, "Circulating current control of double-star chopper-cell modular multilevel converter for HVDC system," in Proceeding of IECON, pp. 1234-1239, Oct. 2012.
  17. M. Zhang, L. Huang, W. Yao, and Z. Lu, “Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 2083-2097, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2269140
  18. A. Antonopoulos, L. Angquist, and H. P. Nee, "On dynamics and voltage control of the Modular Multilevel Converter," 13th Power Electronics and Applications Conference, pp. 1-10, Oct. 2009.
  19. J. Freytes, G. Bergna, J. A. Suul, S. D'Arco, H. Saad, and X. Guillaud, "State-space modelling with steady-state time invariant representation of energy based controllers for modular multilevel converters," 2017 IEEE Manchester PowerTech, pp. 1-7, 2017.
  20. G. Bergna-Diaz, J. A. Suul, and S. D'Arco, "Energy-based state space representation of modular multilevel converters with a constant equilibrium point in steady-state operation," IEEE Trans. Power Electron., Vol. 33, No. 6, pp. 4832-4851, Jun. 2018. https://doi.org/10.1109/TPEL.2017.2727496
  21. X. Shi, Z. Wang, B. Liu, Y. Li, L. M. Tolbert, and F. Wang, “Steady-state modeling of modular multilevel converter under unbalanced grid conditions,” IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 7306-7324, Sep. 2017. https://doi.org/10.1109/TPEL.2016.2629472
  22. J. W. Moon, J. W. Park, D. W. Kang, and J. M. Kim, “A control method of HVDC-modular multilevel converter based on arm current under the unbalanced voltage condition,” IEEE Trans. Power Del., Vol. 30, No. 2, pp. 529-536, Aug. 2015. https://doi.org/10.1109/TPWRD.2014.2342229
  23. Q. Tu, Z. Xu, Y. Chang, and L. Guan, “Suppressing DC voltage ripples of MMC-HVDC under unbalanced grid conditions,” IEEE Trans. Power Del., Vol. 27, No. 3, pp. 1332-1338, Jul. 2012. https://doi.org/10.1109/TPWRD.2012.2196804
  24. X. Shi, Z. Wang, B. Liu, Y. Li, L. M. Tolbert, and F. Wang, “Characteristic investigation and control of modular multilevel converter based HVDC system under singleline-to-ground fault conditions,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 408-421, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2323360
  25. G. Bergna, J. A. Suul, E. Berne, J. C. Vannier, and M. Molinas, "MMC circulating current reference calculation in ABC frame by means of lagrange multipliers for ensuring constant DC power under unbalanced grid conditions," European Conference on Power Electronics and Applications, pp. 1-10, 2014.
  26. Y. Zhou, D. Jiang, J. Guo, P. Hu, and Y. Liang, “Analysis and control of modular multilevel converters under unbalanced conditions,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1986-1995, Oct. 2013. https://doi.org/10.1109/TPWRD.2013.2268981
  27. R. Zeng, L. Xu, L. Yao, and S. J. Finney, "Analysis and Control of Modular Multilevel Converters under Asymmetric Arm Impedance Conditions," IEEE Trans. Ind. Electron., Vol.63, No.1, pp. 71-81, Jan. 2016. https://doi.org/10.1109/TIE.2015.2477057
  28. A. R. Lopez-Nunez, J. D. Mina, J. Aguayo, and G. Calderon, "Proportional integral resonant controller for current harmonics mitigation in a wind energy conversion system," International power electronics congress-CIEP, pp. 232-237, 2016.
  29. A. Ferreira, O. Gomis-Bellmunt, and M. Teixido, "Modular multilevel converter modeling and controllers design," in Proc. ECCE Europe, pp. 1-10, 2014.
  30. L. Harnefors and H.-P. Nee, “Model-based current control of ac machines using the internal model control method,” IEEE Trans. Ind. Appl., Vol. 34, No. 1, pp. 133-141, Jan. 1998. https://doi.org/10.1109/28.658735
  31. M. Hagiwara and H. Akagi, “Control and experiment of pulsewidth-modulated modular multilevel converters,” IEEE Trans. Power Electron., Vol. 24, No. 7, pp. 1737-1746, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2014236
  32. F. Deng and Z. Chen, “A control method for voltage balancing in modular multilevel converters,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 66-76, Jan. 2014. https://doi.org/10.1109/TPEL.2013.2251426
  33. Q. Tu, Z. Xu, and L. Xu, “Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters,” IEEE Trans. Power Del., Vol. 26, No. 3, pp. 2009-2017, Apr. 2011. https://doi.org/10.1109/TPWRD.2011.2115258
  34. Y. Li, E. A. Jones, and F. Wang, “The impact of voltagebalancing control on switching frequency of the modular multilevel converter,” IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 2829-2839, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2448713