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Abstract. In this paper we consider all orientation-preserving Zp2 -actions on 3-

dimensional handlebodies Vg of genus g > 0 for p an odd prime. To do so, we examine par-

ticular graphs of groups (Γ(v),G(v)) in canonical form for some 5-tuple v = (r, s, t,m, n)

with r + s + t + m > 0. These graphs of groups correspond to the handlebody orbifolds

V (Γ(v),G(v)) that are homeomorphic to the quotient spaces Vg/Zp2 of genus less than

or equal to g. This algebraic characterization is used to enumerate the total number of

Zp2 -actions on such handlebodies, up to equivalence.

1. Introduction

A G-action on a handlebody Vg, of genus g > 0, is a group monomorphism
φ : G −→ Homeo+(Vg), where Homeo+(Vg) denotes the group of orientation-
preserving homeomorphisms of Vg. Two actions φ1 and φ2 on Vg are said to be
equivalent if and only if there exists an orientation-preserving homeomorphism h of
Vg such that φ2(x) = h ◦ φ1(x) ◦ h−1 for all x ∈ G. A graph of groups (Γ,G) is a
connected graph Γ consisting of a collection of groups Gv and Ge indexed by the
vertices and edges of Γ, respectively, together with a collection of edge-to-vertex
monomorphisms fe : Ge −→ Gv associated from G. As described in [3], we may
construct a handlebody orbifold V (Γ,G) using the graph of groups (Γ,G), which
satisfies a set of normalized conditions that allows for this construction, as a ‘core’.
Due to the work of Kalliongis and Miller found in [2], if V is the orbifold quotient
of Vg under an orientation-preserving finite group action or V is homeomorphic to
V (Γ0,G0) where (Γ0,G0) satisfies the normalized conditions, then V is homeomor-
phic to V (Γ,G) for a graph of groups (Γ,G) in canonical form. Note that (Γ,G)
is said to be in canonical form provided it has the form shown in Figure 1, where
each Γk is a subgraph of Γ such that (1) no edges have trivial edge group and (2)
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if e is an edge in Γk then e is either a loop or fe is not surjective. We also require
the vertex group Gv0 be trivial and each edge not contained in one of the Γk’s has
trivial edge group. This form uniquely determines the homeomorphism type of its
corresponding handlebody orbifold.

Γ1 Γ2 Γs

v0

Figure 1: Canonical Form

Define Γ1 to be the subgraph with one vertex v and one edge e that is a loop
such that Gv = Ge = Zp2 and define Γ2 to be the subgraph with one vertex v
such that Gv = Zp2 . Now repeat this process for Γ3 and Γ4 using the group Zp.
Let v = (r, s, t,m, n) be an ordered 5-tuple of nonnegative integers such that the
graph of groups (Γ(v),G(v)) in canonical form has r trivial loops, s copies of Γ1,
t copies of Γ2, m copies of Γ3, and n copies of Γ4. (See [4] for the case p = 2 and
p2 = 4). Then (Γ(v),G(v)) satisfies the normalized conditions and determines a
handlebody orbifold V (Γ(v),G(v)). The orbifold V (Γ(v),G(v)) is constructed in
a similar manner as described in [2]. Note that the quotient of any Zp2 -action on
Vg is an orbifold of this type, up to homeomorphism.

An explicit combinatorial enumeration of orientation-preserving Z4-actions on
Vg, up to equivalence, is given in [4]. In this work we will be interested in examining
the orientation-preserving geometric group actions on Vg for the group Zp2 for p an
odd prime. The results obtained here are potentially useful in studying finite group
actions on compact 3-manifolds by way of their Heegaard decompositions into the
sum of two handlebodies.

2. Combinatorial Argument

The orbifold fundamental group πorb1 (V (Γ(v),G(v))) is an extension of the
free group π1(Vg) by G = Zp2 so that the latter group is a normal subgroup of
πorb1 (V (Γ(v),G(v))) with quotient the free group. Using a version of van Kam-
pen’s theorem for orbifolds, we see that the fundamental group is the free product
G1 ∗G2 ∗G3 ∗ · · · ∗Gr+s+t+m+n, where Gi is isomorphic to either Z, Zp2 × Z, Zp2 ,
Zp×Z, or Zp. We establish notation similar to [4] and denote the generators of the
orbifold fundamental group by {ai : 1 ≤ i ≤ r} ∪ {bj , cj : 1 ≤ j ≤ s} ∪ {dk : 1 ≤
k ≤ t} ∪ {el, fl : 1 ≤ l ≤ m} ∪ {gq : 1 ≤ q ≤ n} such that bp

2

j = dp
2

k = 1, [bj , cj ] = 1,
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epl = gpq = 1, and [el, fl] = 1.
Consider the set of pairs ((Γ(v),G(v)), λ), where λ is a finite injective epimor-

phism from πorb1 (V (Γ(v),G(v))) onto Zp2 . We say λ is finite injective since the
kernel of λ is a free group of rank g. We consider only finite injective epimorphisms
such that ker(λ)=im(ν∗) for some orbifold covering ν : V −→ V (Γ(v),G(v)). Since
V is a handlebody with torsion free fundamental group, V is homeomorphic to a
handlebody Vg of genus g = 1−p2χ(Γ(v),G(v)). Define an equivalence relation on
this set of pairs by setting ((Γ(v),G(v)), λ) ≡ ((Γ(v),G(v)), λ′) if and only if there
exists an orbifold homeomorphism h : V (Γ(v),G(v)) −→ V (Γ(v),G(v)) such that
λ′ = λ◦h∗. We define the set ∆(Zp2 , Vg, V (Γ(v),G(v))) to be the set of equivalence
classes [((Γ(v),G(v)), λ)] under this relation.

Denote the set set of equivalence classes E (Zp2 , Vg, V (Γ(v),G(v))) to be the
set {[φ] | φ : Zp2 −→ Homeo+(Vg) and Vg/φ ' V (Γ(v),G(v))}. Note that
given any Zp2-action φ : Zp2 −→ Homeo+(Vg), it must be the case that for some
V (Γ(v),G(v)), [φ] ∈ E (Zp2 , Vg, V (Γ(v),G(v))). The following theorem has a simi-
lar proof technique as found in [2].

Theorem 2.1. Let v = (r, s, t,m, n). The set E (Zp2 , Vg, V (Γ(v),G(v))) is in
one-to-one correspondence with the set ∆(Zp2 , Vg, V (Γ(v),G(v))) for every g > 0.

To prove the three main theorems in this paper (Theorems 3.4, 4.2, and 5.1), we
count the number of elements in the delta set and use the one-to-one correspondence
given in Theorem 2.1 to give the total count for the set E (Zp2 , Vg, V (Γ(v),G(v))) as
stated in Corrollary 6.1. To do so, recall that λ(gi) = yi for gi ∈ πorb1 (V (Γ(v),G(v)))
and yi ∈ Zp2 . In Lemmas 3.3 and 4.1 we will see that we can restrict our count to
specific λ’s that satisfy an ordering on a subset of the generators (or nongenerators)
of Zp2 . We will use the following combinatorial argument along with Lemmas 3.3
and 4.1 to prove the three main theorems.

Let G be a finite group of n elements. Let S(k) ⊆ G be a subset with
k elements. Hence S (k) = {y1, y2, y3, . . . , yk} and yi ∈ G. Define the set
O(j) ⊆ (S(k))j to be the set of j-tuples ordered on the indices. That is,
O(j) = {

(
yi1 , yi2 , yi3 , . . . , yij

)
| i1 ≤ i2 ≤ i3 ≤ · · · ≤ ij}. Now define the set

O(j, `) to be the set of j-tuples ordered on the indices such that the first index is
the fixed quantity k − (`− 1). That is, O(j, `) = {

(
yi1 , yi2 , yi3 , . . . , yij

)
| i1 ≤ i2 ≤

i3 ≤ · · · ≤ ij , i1 = k − (`− 1)}.

Lemma 2.2. O (j, `) ∩O (j′, `) = ∅ if and only if j 6= j′.

Now define the count of the set O(j) to be the number C (j) = |O (j) | and
the count of the set O(j, `) to be the number C (j, `) = |O (j, `) |. Then C (j) =∑k
l=1 C (j, l). Furthermore, the following lemma holds.

Lemma 2.3. C (j + 1, l) =
∑l
u=1 C (j, u).

Theorem 2.4. C (j) = Akj where Ak1 = k if j = 1, Ak2 = k(k+1)
2 if j = 2, and

Akj =
∑k−1
i=0

[(
j−3+i
j−3

)∑k−i
u=1 u

]
if j ≥ 3.
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Proof. Let j = 1. Then C (1) =
∑k
l=1 C (1, l) =

∑k
l=1 1 = k. Now let j = 2. Then

C (2, l) = l so that C (2) =
∑k
l=1 C (2, l) =

∑k
l=1 l = k(k+1)

2 . Finally let j ≥ 3.

Then C (j) =
∑k−1
i=0

[(
j−3+i
j−3

)∑k−i
u=1

]
. To see this we will use induction on j. For

the base case, let j = 3. Then

C (3) =

k∑
l=1

C (3, l) =

k∑
l=1

l∑
u=1

C (2, u) =

k∑
l=1

l∑
u=1

u =

1∑
u=1

u+

2∑
u=1

u+ · · ·+
k∑
u=1

u

=

k∑
u=1

u+ · · ·+
2∑

u=1

u+

1∑
u=1

u =

k−1∑
i=0

[(
i

0

) k−i∑
u=1

u

]
.

For the inductive step, assume C (j) =
∑k−1
i=0

[(
j−3+i
j−3

)∑k−i
u=1 u

]
. Then

C (j + 1) =

k∑
l=1

C (j + 1, l) = C (j + 1, 1) + C (j + 1, 2) + · · ·+ C (j + 1, k)

=

1∑
q=1

C (j, q) +

2∑
q=1

C (j, q) + · · ·+
k∑
q=1

C (j, q) =

0∑
i=0

[(
j − 3 + i

j − 3

) 1−i∑
u=1

u

]

+

1∑
i=0

[(
j − 3 + i

j − 3

) 2−i∑
u=1

u

]
+ · · ·+

k−1∑
i=0

[(
j − 3 + i

j − 3

) k−i∑
u=1

u

]

=

[(
j − 3

j − 3

)
+

(
j − 3 + 1

j − 3

)
+

(
j − 3 + 2

j − 3

)
+ · · ·+

(
j − 3 + (k − 1)

j − 3

)] 1∑
u=1

u

+

[(
j − 3

j − 3

)
+

(
j − 3 + 1

j − 3

)
+ · · ·+

(
j − 3 + (k − 2)

j − 3

)] 2∑
u=1

+ · · ·

=

[(
j − 2 + (k − 1)

j − 2

)] 1∑
u=1

u. 2

Note that we will define Ak0 = 1 for j = 0.

3. The 5-tuple v= (r, s, t,m, n) with s+ t > 0

We resort to the following lemma to help count the number of elements in the
delta set. The proof is an adaptation from [2]. The element α in Lemma 3.1 is an
element of an automorphism group of the (orbifold) fundamental group of the graph
of groups that is associated with a group action on a handlebody whose fundamental
group is free.

Lemma 3.1. If α ∈ Aut(πorb1 (V (Γ(v),G(v)))), then α = h∗ for some orientation-
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preserving homeomorphism h : V (Γ(v),G(v)) −→ V (Γ(v),G(v)) if and only if

α(bj) = xjb
εj
σ(j)x

−1
j ,

α(cj) = xjb
vj
σ(j)c

εj
σ(j)x

−1
j ,

α(dk) = ykd
δk
τ(k)y

−1
k ,

α(el) = ule
ε′l
γ(l)u

−1
l ,

α(fl) = ule
wl

γ(l)f
ε′l
γ(l)u

−1
l , and

α(gq) = zqg
δ′q
ξ(q)z

−1
q ,

for some xj , yk, ul, zq ∈ πorb1 (V (Γ(v),G(v))); σ ∈
∑
s, τ ∈

∑
t, γ ∈

∑
m, ξ ∈

∑
n;

εj , δk, ε
′
l, δ
′
q ∈ {+1,−1}; and 0 ≤ vj < p2, 0 ≤ wl < p.

Note that Σl is the permutation group on l letters.

Note that from [1], a generating set for the automorphisms of πorb1 (V (Γ(v,G(v))))
is the set of mappings {ρji(x), λji(x), µji(x), ωij , σi, φi} whose definitions may be
found in [1]. The first five maps are realizable. The realizable φi’s are of the form
found in Lemma 3.1 and will be used in the remaining arguments of this paper.

Lemma 3.2 Let v = (r, s, t,m, n) for s+ t > 0 and let λ : πorb1 (V (Γ(v,G(v)))) −→
Zp2 be a finite injective epimorphism. There exists a finite injective epimorphism

λ′ : πorb1 (V (Γ(v,G(v)))) −→ Zp2 equivalent to λ such that p ≤ λ′(ei) = ui ≤ (p−12 )p
with gcd(ui, p

2) = p and 0 ≤ λ′(fi) ≤ p− 1.

Proof. Let λ : πorb1 (V (Γ(v,G(v)))) −→ Zp2 be a finite injective epimorphism such

that λ(ei) = tip and λ(fi) = xi. For the first case assume that 1 ≤ ti ≤ p−1
2

and xi > p − 1. Then we may write xi = si + wip where 0 ≤ si ≤ p − 1 and
1 ≤ wi ≤ p − 1. Define the realizable automorphism

∏
φi, where each φi sends fi

to the element e
−wit

−1
i

i fi and fixes ei. (Note that this is a Dehn twist). That is,

(λ ◦ φi)(fi) = λ(e
−wit

−1
i

i fi) = −wip+ (si + wip) = si for all i. For the second case
assume that p−1

2 < ti ≤ p − 1 and 0 ≤ xi ≤ p − 1. In this case we may define

a realizable automorphism
∏
φi, where each φi sends ei to e−1i and sends fi to

e
t−1
i
i f−1i . We can easily see that (λ◦φi)(ei) = −tip = (p− ti)p and 1 ≤ p− ti ≤ p−1

2

for all i. Now (λ ◦ φi)(fi) = λ(e
t−1
i
i f−1i ) = p − xi and 0 ≤ p − xi ≤ p − 1 holds

for all i. Finally, assume that p−1
2 < ti ≤ p − 1 and xi > p − 1. In this case

define a realizable automorphism
∏
φi ◦

∏
φ′i, where each φ′i sends ei and fi to

their inverses and φi sends fi to e
wit
−1
i +t−1

i
i fi and fixes ei. Again, it is easy to

verify that (λ ◦ φi)(ei) = (p − ti)p and 1 ≤ p − ti ≤ p−1
2 for all i. Now (λ ◦ φi ◦

φ′i)(fi) = (λ ◦ φi)(f−1i ) = λ((e
wit
−1
i +t−1

i
i fi)

−1) = −(si +wip) +wip+ p = p− si and
0 ≤ p− si ≤ p− 1 for all i. 2
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Lemma 3.3. Let v = (r, s, t,m, n) for s+t > 0 and let λ : πorb1 (V (Γ(v,G(v)))) −→
Zp2 be a finite injective epimorphism. There exists a finite injective epimorphism
λ′ : πorb1 (V (Γ(v,G(v)))) −→ Zp2 equivalent to λ such that the following hold:

(1) λ′(a1) = · · · = λ′(ar) = 0.

(2) 1 ≤ λ′(b1) = x1 ≤ λ′(b2) = x2 ≤ · · · ≤ λ′(bs) = xs ≤ p2−1
2 and gcd(xi, p

2) = 1
for 1 ≤ i ≤ s.

(3) λ′(c1) = · · · = λ′(cs) = 0.

(4) 1 ≤ λ′(d1) = y1 ≤ λ′(d2) = y2 ≤ · · · ≤ λ′(dt) = yt ≤ p2−1
2 and gcd(yj , p

2) = 1
for 1 ≤ j ≤ t.

(5) p ≤ λ′(el) = ul ≤ (p−12 )p and gcd(ul, p
2) = p for all 1 ≤ l ≤ m.

(6) 0 ≤ λ′(fl) ≤ p− 1 for all 1 ≤ l ≤ m.

(7) p ≤ λ′(g1) = z1 ≤ λ′(g2) = z2 ≤ · · · ≤ λ′(gn) = zn ≤ (p−12 )p and
gcd(zk, p

2) = p for 1 ≤ k ≤ n.

Proof. Let λ : πorb1 (V (Γ(v,G(v)))) −→ Zp2 be a finite injective epimorphism.
Without loss of generality, assume that s > 0. Then there exists an element
ki such that kiλ(br+1) = λ(ai) for each generator ai. Note that if s = 0,
choose dr+1. Property (1) follows by composing λ with the realizable auto-
morphism

∏
λ(r+1)i((λ(br+1))ki). (Note that this is a handle slide). That is,

we have (λ ◦ λ(r+1)i((λ(br+1))ki))(ai) = λ((br+1)−kiai) = −kiλ(br+1) + λ(ai) =
−λ(ai) + λ(ai) = 0 for all 1 ≤ i ≤ r. Similarly, there exists an element `i such
that `iλ(bi) = λ(ci) for all ci since λ is finite injective. Property (3) follows by
composing λ with the realizable automorphism

∏
φi, where each φi sends the gen-

erator ci to the element b−`ii ci and fixes bi. (Note that this is a Dehn twist). That is,

(λ◦φi)(ci) = λ(b−`ii ci) = −`iλ(bi)+λ(ci) = −λ(ci)+λ(ci) = 0 for all 1 ≤ i ≤ s. Now

cut the set Zp2−{0} in half to get the two sets {1, 2, . . . , p
2−1
2 } and {p

2+1
2 , . . . , p2−1}.

Notice that each element in the first set is the inverse of an element in the second
set. Property (2) follows by composing λ with the realizable automorphism

∏
φi,

where φi sends the generator bi to b−1i provided λ(bi) ∈ {p
2+1
2 , . . . , p2 − 1}. (Note

that this is a spin). We may then compose with the realizable automorphism
∏
ωij ,

which interchanges handles if necessary. A similar argument shows Properties (4)
and (7). Clearly Properties (5) and (6) follow from Lemma 3.2. 2

Theorem 3.4. Let v= (r, s, t,m, n) with s+ t > 0. If Zp2 acts on Vg, then g− 1 =
p2 (r + s+m− 1) +

(
p2 − 1

)
t +

(
p2 − p

)
n. The number of equivalence classes of

Zp2-actions on Vg such that Vg/Zp2 = V (Γ(v), G(v)) is the product A
(
p(p−1)

2 )s
·

A
(
p(p−1)

2 )t
·A

(
p(p−1)

2 )m
·A( p−1

2 )n
.

Proof. Applying Theorem 2.1, and noting that the orbifold fundamental group is
a free product, we see that the count of the delta set is the product of the count
of distinct mappings λ satisfying the result of Lemma 3.3. Due to this, we only
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need to consider the generators bi, di, ei, fi, and gi. We will first count the number
of distinct mappings restricted to the generator bi. To do so, note that there are
p(p−1)

2 generators of Zp2 in the set {1, 2, . . . , p
2−1
2 }. Since λ(bi) are ordered, we may

think of them as s-tuples in the set O(p(p−1)2 ) from Section 2. Applying Theorem
2.4, we see that there are A

(
p(p−1)

2 )s
distinct λ’s. A similar argument works for the

generator di giving us A
(
p(p−1)

2 )s
distinct λ’s. We will now count the number of

distinct mappings restricted to the generator gi. To do so, we may note that there
are only p−1

2 multiples of p that satisfy Lemma 3.3. Again, since λ(gi) are ordered,

we may think of them as n-tuples in the set O(p−12 ) from Section 2. Applying
Theorem 2.4, we see that there are A( p−1

2 )n
distinct λ’s. Now to count the number

of distinct mappings for the generators ei and fi, we may think of them as the

ordered pair (ei, fi). When m = 1, there are p(p−1)
2 distinct order pairs that satisfy

Properties (5) and (6) from Lemma 3.3. We may relabel these ordered pairs by yi
and create an m-tuple in the set O(p(p−1)2 ). Note that there exists a realizable action
when doing this. Again, applying Theorem 2.4, we see that there are A

(
p(p−1)

2 )m

distinct λ’s, proving the theorem. 2

4. The 5-tuple v= (r, 0, 0,m, n) with r > 0

We will now consider the 5-tuple v= (r, 0, 0,m, n) with s+ t = 0 and r > 0. For
the following lemma, we will need to account for two cases: (1) there exists at least
one generator fi that is mapped to a generator of Zp2 and (2) otherwise. Note that
these maps are not equivalent. (This is a modification of Lemma 2.3 from [4]).

Lemma 4.1. Let v = (r, 0, 0,m, n) for r > 0 and let λ : πorb1 (V (Γ(v,G(v)))) −→
Zp2 be a finite injective epimorphism. There exists a finite injective epimorphism
λ′ : πorb1 (V (Γ(v,G(v)))) −→ Zp2 equivalent to λ such that the following hold:

(1) λ′(a1) = · · · = λ′(ar) = 0.

(2) p ≤ λ′(el) = ul ≤ (p−12 )p and gcd(ul, p
2) = p for all 1 ≤ l ≤ m.

(3) 1 ≤ λ′(f1) = y1 ≤ p− 1.

(4) 0 ≤ λ′(fj) ≤ p− 1 for all 2 ≤ j ≤ m.

(5) p ≤ λ′(g1) = z1 ≤ λ′(g2) = z2 ≤ · · · ≤ λ′(gn) = zn ≤ (p−12 )p and
gcd(zk, p

2) = p for 1 ≤ k ≤ n.

OR

(1) 1 ≤ λ′(a1) = x1 ≤ p(p−1)
2 and gcd(x1, p

2) = 1.

(2) λ′(a2) = · · · = λ′(ar) = 0.

(3) p ≤ λ′(el) = ul ≤ (p−12 )p and gcd(ul, p
2) = p for all 1 ≤ l ≤ m.

(4) λ′(f1) = · · · = λ′(fm) = 0.



580 Jesse Prince-Lubawy

(5) p ≤ λ′(g1) = z1 ≤ λ′(g2) = z2 ≤ · · · ≤ λ′(gn) = zn ≤ (p−12 )p and
gcd(zk, p

2) = p for 1 ≤ k ≤ n.

Note that the first set of properties hold when there exists at least one generator
fi that is mapped to a generator of Zp2 . To show Properties (1)-(5) in both cases,
we use similar techniques found in the proof of Lemma 3.3. That is, handle slides,
spins, interchanging handles, and Dehn twists. From this we get the following
theorem.

Theorem 4.2. Let v= (r, 0, 0,m, n) with r > 0. If Zp2 acts on Vg, then g − 1 =
p2 (r +m− 1) +

(
p2 − p

)
n. The number of equivalence classes of Zp2-actions on

Vg such that Vg/Zp2 = V (Γ(v), G(v)) is the sum (p−1)2
2 · A

(
p(p−1)

2 )m−1
· A( p−1

2 )n
+

p(p−1)
2 ·A( p−1

2 )m
·A( p−1

2 )n
.

Proof. The first portion of the sum follows from the case there exists at least one
generator fi that is mapped to a generator of Zp2 . In this case we can again think
of the ordered pair (ei, fi) as yi exactly as we did in Theorem 3.4. We may note

that there are (p−1)2
2 possibilities for y1. The count of the remaining m − 1 slots

follows from Theorem 3.4. (Similarly for counting gi). The second portion of the

sum involves counting a1. However, we can see that there are p(p−1)
2 possibilities.

The remaining values follow from Theorem 3.4. 2

5. The 5-tuple v= (0, 0, 0,m, n) with m > 0

Finally we will consider the 5-tuple v= (0, 0, 0,m, n) with r + s + t = 0 and
m > 0. Given a finite injective epimorphism λ, it is clear that we may obtain an
equivalent λ′ that satisfies Properties (2)-(5) of the first case of Lemma 4.1. The
following theorem is a modification of Theorem 4.2.

Theorem 5.1. Let v= (0, 0, 0,m, n) with m > 0. If Zp2 acts on Vg, then
g−1 = p2 (m− 1)+

(
p2 − p

)
n. The number of equivalence classes of Zp2-actions on

Vg such that Vg/Zp2 = V (Γ(v), G(v)) is the product (p−1)2
2 ·A

(
p(p−1)

2 )m−1
·A( p−1

2 )n
.

6. The Number of Equivalence Classes of Z25-actions on V26

Corollary 6.1 Let p be a fixed odd prime and g a fixed natural number. Then the or-
der of the set E (Zp2 , Vg, V (Γ(v),G(v))) is the count for all 5-tuples v= (r, s, t,m, n)
that satisfy the equation g = 1− p2χ(Γ(v),G(v)).

To see this, fix p = 5 and g = 26. Now g must satisfy the genus equation
g = 1− 25χ(Γ, G). Therefore we see that 50 = 24t+ 20n+ 25(r + s+m). Solving
this equation we see that t = 0, n = 0, and r + s + m = 2. This leads to the
following ordered 5-tuples: (0,2,0,0,0), (2,0,0,0,0), (0,0,0,2,0), (1,1,0,0,0), (1,0,0,1,0),
and (0,1,0,1,0). Using Theorems 3.4, 4.2, and 5.1, the counts for the following
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ordered 5-tuples are 55, 10, 55, 10, 18, and 100, respectively. Thus the total number
of equivalence classes of Z25-actions on V26 is 55+10+55+10+18+100=248.
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