DOI QR코드

DOI QR Code

Existence of Solutions for a Class of p(x)-Kirchhoff Type Equation with Dependence on the Gradient

  • 투고 : 2017.05.29
  • 심사 : 2018.07.18
  • 발행 : 2018.09.23

초록

The object of this work is to study the existence of solutions for a class of p(x)-Kirchhoff type problem under no-flux boundary conditions with dependence on the gradient. We establish our results by using the degree theory for operators of ($S_+$) type in the framework of variable exponent Sobolev spaces.

키워드

참고문헌

  1. C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal., 8(2001), 43-56.
  2. C. O. Alves and F. J. S. A. Correa, A sub-supersolution approach for a quasilinear Kirchhoff equation, J. Math. Phys., 56(2015), 051501, 12pp.
  3. A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348(1996), 305-330. https://doi.org/10.1090/S0002-9947-96-01532-2
  4. R. Ayazoglu and I. Ekincoiglu, Electrorheological fluids equations involving variable exponent with dependence on the gradient via mountain pass techniques, Numer. Funct. Anal. Optim., 37(9)(2016), 1144-1157. https://doi.org/10.1080/01630563.2016.1205088
  5. M.-M. Boureanu and D. Udrea, Existence and multiplicity results for elliptic problems with $p({\cdot})$-growth conditions, Nonlinear Anal. Real World Appl., 14(2013), 1829-1844. https://doi.org/10.1016/j.nonrwa.2012.12.001
  6. E. Cabanillas L., A.G. Aliaga LL. ,W. Barahona M. and G. Rodriguez V., Existence of Solutions for a Class of p(x)-Kirchhoff Type Equation Via Topological Methods, Int. J. Adv. Appl. Math. Mech., 2(4)(2015) 64-72.
  7. M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6(2001), 701-730.
  8. M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30(1997), 4619-4627. https://doi.org/10.1016/S0362-546X(97)00169-7
  9. M. Chipot and J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Model. Math. Anal. Numer., 26(1992), 447-467. https://doi.org/10.1051/m2an/1992260304471
  10. F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations, Nonlinear Anal., 74(2011), 5962-5974. https://doi.org/10.1016/j.na.2011.05.073
  11. F. J. S. A. Correa and G. M. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Austral. Math. Soc., 74(2006), 263-277. https://doi.org/10.1017/S000497270003570X
  12. F. J. S. A. Correa and G. M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett., 22(2009), 819-822. https://doi.org/10.1016/j.aml.2008.06.042
  13. F. J. S. A. Correa and S. D. B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput., 147(2004), 475-489.
  14. G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359(2009), 275-284. https://doi.org/10.1016/j.jmaa.2009.05.031
  15. G. Dai and R. Ma, Solutions for a p(x)-Kirchhoff-type equation with Neumann boundary data, Nonlinear Anal. Real World Appl., 12(2011), 2666-2680. https://doi.org/10.1016/j.nonrwa.2011.03.013
  16. G. Dai and J. Wei, Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal., 73(2010), 3420-3430. https://doi.org/10.1016/j.na.2010.07.029
  17. P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108(1992), 247-262.
  18. M. Dreher, The Kirchhoff equation for the p-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 64(2006), 217-238.
  19. M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J., 36(2007), 21-52.
  20. X. L. Fan, On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 72(2010), 3314-3323. https://doi.org/10.1016/j.na.2009.12.012
  21. X. L. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k;p(x)}({\Omega})$, J. Math. Anal. Appl., 262(2001), 749-760. https://doi.org/10.1006/jmaa.2001.7618
  22. X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52(2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  23. X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m;p(x)}(\Omega)$, J. Math. Anal. Appl., 263(2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  24. F. Faraci, D. Motreanu and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations, 54(2015) 525-538. https://doi.org/10.1007/s00526-014-0793-y
  25. L. F. O. Faria, O. H. Miyagaki, D. Motreanu and M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal., 96(2014), 154-166.
  26. G. M. Figueiredo, Quasilinear equations with dependence on the gradient via Mountain Pass techniques in $\mathbb{R}^n$, Appl. Math. Comput., 203(2008), 14-18.
  27. D. G. de Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via Mountain Pass techniques, Differential Integral Equations, 17(2004) 119-126.
  28. N. B. Huy and B. T. Quan, Positive solutions of logistic equations with dependence on gradient and nonhomogeneous Kirchhoff term, J. Math. Anal. Appl., 444(2016), 95-109. https://doi.org/10.1016/j.jmaa.2016.06.020
  29. I. Kim and S. Hong, A topological degree for operators of generalized ($S_+$) type, Fixed Point Theory Appl., (2015), 2015:194, 16 pp. https://doi.org/10.1186/s13663-015-0445-8
  30. G. Kirchhoff, Mechanik, Teubner, leipzig, Germany, 1883.
  31. J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978.
  32. G. Liu, S. Shi and Y. Wei, Semilinear elliptic equations with dependence on the gradient, Electron. J. Differential Equations, 139(2012), 9 pp.
  33. J. Liu, L. Wang and P. Zhao, Positive solutions for a nonlocal problem with a convection term and small perturbations, Math. Methods Appl. Sci., 40(3)(2017), 720-728. https://doi.org/10.1002/mma.4003
  34. A. Ourraoui, On an elliptic equation of p-Kirchhoff type with convection term, C. R. Math. Acad. Sci. Paris, 354(2016), 253-256. https://doi.org/10.1016/j.crma.2015.10.025
  35. M. Pei, L. Wang and X. Lv, Multiplicity of positive radial solutions of p-Laplacian problems with nonlinear gradient term, Bound. Value Probl., 36(2017), 7 pp.
  36. I. V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Translations of Mathematical Monographs 139, American Mathematical Society, Providence, RI, 1994
  37. C. F. Vasconcellos, On a nonlinear stationary problem in unbounded domains, Rev. Mat. Univ. Complut. Madrid, 5(1992), 309-318.
  38. M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with nonlinearity including the gradient, Bound. Value Probl., (2013), 2013:173, 11 pp. https://doi.org/10.1186/1687-2770-2013-173
  39. S. L. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math., 37(1971), 173-180 https://doi.org/10.4064/sm-37-2-173-180
  40. Z. Yucedag and R. Ayazoglu, Existence of solutions for a class of Kirchhoff-type equation with nonstandard growth, Univ. J. App. Math., 2(5)(2014), 215-221
  41. E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990.