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Abstract. The first purpose of this note is to generalize two nice theorems of H. J.

Kim concerning hyperinvariant subspaces for certain classes of operators on Hilbert space,

proved by him by using the technique of “extremal vectors”. Our generalization (Theorem

1.2) is obtained as a consequence of a new theorem of the present authors, and doesn’t

utilize the technique of extremal vectors. The second purpose is to use this theorem to

obtain the existence of hyperinvariant subspaces for a class of 2 × 2 operator matrices

(Theorem 3.2).

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space and B(H)
the algebra of all bounded operators on H. For T ∈ B(H), we write {T}′ for the
commutant of T (i.e., for the algebra of all S ∈ B(H) such that TS = ST ). A
subspace M ⊂ H is invariant for T in B(H) if TM ⊂ M, and a subspace M is
hyperinvariant for T if it is an invariant subspace for all S in {T}′. The question
whether every operator in B(H) has a nontrivial invariant subspace, which has
been around since von Neumann studied it in the 1930’s, is still an open problem.
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Moreover the question of whether every operator in B(H) \ C1H has a nontrivial
hyperinvariant subspace is also open. The results in this note contribute to this
circle of ideas.

In two recent papers [5] and [6], H. J. Kim, using the technique of “extremal
vectors” introduced by Ansari and Enflo in [1] (for more information about this
technique, see the book [3]), proved two nice theorems which we combine as

Theorem 1.1.(H. J. Kim) Let T ∈ B(H ⊕H) be given matricially as

T =

(
A C
0 B

)
,

where A, B, and C are arbitrary operators in B(H) such that A is either a nonzero
compact operator or a nonscalar normal operator. Then at least one of T and

T̃ =

(
B D
0 A

)
,

where D is arbitrary operator in B(H), has a nontrivial hyperinvariant subspace
(notation: n.h.s.).

The purpose of this note is first to give a short and simpler proof of a better
theorem, and then to use this result to obtain the existence of n.h.s. for a class of
2×2 matrices with operator entries (Theorem 3.2). Our first result is the following.

Theorem 1.2. Let A and B be operators in B(H) such that either A or B has
a n.h.s. Then either

i) for every operator C in B(H), the operator TC ∈ B(H ⊕H) given matricially
as

TC =

(
A C
0 B

)
,(1.1)

has a n.h.s., or

ii) for every operator D in B(H), the operator T̃D given matricially as

T̃D =

(
B D
0 A

)
,(1.2)

has a n.h.s.

2. Preliminary Results

Before proving Theorem 1.2, we obtain two needed results. The first one is a
new theorem of the present authors, and the second is an elementary proposition
about transitive subalgebras of B(H ⊕H) (i.e., subalgebras S with the property that
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S has no nontrivial invariant subspace). The first of these two results generalizes
theorems from [4].

Theorem 2.1. Suppose T = TC is as in (1.1), where A,B, and C are arbitrary
operators in B(H) and there exists X in B(H) satisfying AX = XB. If either

a) there exists a n.h.s. M for A such that XH 6⊂M, or

b) there exists a n.h.s. N for B such that kerX 6⊃ N,

then T has a n.h.s.

Proof. We prove b); the proof of a) is quite similar and left to the reader. Thus we
are given a n.h.s. N for B and an operator X in B(H) such that AX = XB and
kerX 6⊃ N. With T as in (1.1), denote its commutant by

{T}′ =

{(
Lσ Mσ

Nσ Pσ

)
: σ ∈ Σ

}
.(2.1)

Since every matrix in (2.1) commutes with T , upon doing the matrix multiplication,
for each σ ∈ Σ we obtain four equations, with the one corresponding to the (2, 1)
entry of the product being

BNσ = NσA, σ ∈ Σ.(2.2)

Multiplication of (2.2) on the right by X gives

BNσX = NσAX = NσXB, σ ∈ Σ,

so for each σ ∈ Σ, NσX commutes with B and therefore NσXN ⊂ N, σ ∈ Σ. By
hypothesis there exists y ∈ N such that Xy 6= 0. Finally, let us suppose, to obtain
a contradiction, that {T}′ is transitive. It then follows easily from Proposition 2.2
below (which is completely independent of this theorem) that {NσXy : σ ∈ Σ}− =
H, which contradicts the fact that NσXy ∈ N for all σ ∈ Σ. Thus {T}′ is not
transitive and the proof is complete. 2

Proposition 2.2. Suppose that

S =

{(
Lσ Mσ

Nσ Pσ

)
: σ ∈ Σ

}
is a transitive subalgebra of B(H ⊕H), and let x, y ∈ H with x 6= 0. Then for
every ε > 0, there exists Lσ1 [respectively, Mσ2 , Nσ3 , Pσ4 ] such that ‖Lσ1x− y‖ < ε
[respectively, ‖Mσ2

x− y‖ < ε, ‖Nσ3
x− y‖ < ε, ‖Pσ4

x− y‖ < ε].

Proof. It is well-known (cf., e.g., [8]) that every transitive subalgebra A ⊂ B(H) is
1-transitive, meaning that for every x 6= 0 and y in H and every ε > 0, there exists
Aε ∈ A such that ‖Aεx− y‖ < ε. If we apply this fact to the transitive subalgebra
S ⊂ B(H ⊕H) and the vectors (x, 0)t and (y, 0)t, we obtain an element(

Lσ Mσ

Nσ Pσ

)
∈ S
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such that

ε >

∥∥∥∥( Lσ Mσ

Nσ Pσ

)(
x
0

)
−
(
y
0

)∥∥∥∥
=

(
‖Lσx− y‖2 + ‖Nσx‖2

)1/2
≥ ‖Lσx− y‖ .

By changing the positions of the vectors x and y in the direct sum H ⊕H, the other
three desired inequalities follow similarly. 2

Proof of Theorem 1.2. We shall prove i). The proof of ii) is essentially the same.
To establish i) there are two cases - that in which A has a n.h.s. and that in which
B has a n.h.s. Once again the proofs are virtually indistinguishable, so we shall
content ourselves with proving i) under the condition that B has a n.h.s. N. Thus,
by virtue of Theorem 2.1 b), it is sufficient to exhibit an operator X in B(H) and
a nonzero vector v ∈ N such that AX = XB and Xv 6= 0. We may and do suppose
that ii) is false, that is, there exists D0 in B(H) such that T̃D0 as in (1.2) has no

n.h.s. We write the commutant of {T̃D0
} as

{T̃D0
}′ =

{(
L′σ M ′σ
N ′σ P ′σ

)
: σ ∈ Σ

}
,(2.3)

and we are given that the algebra {T̃D0
}′ is transitive. Since TD0

commutes with
every matrix in (2.3), we obtain, for each σ ∈ Σ, four equations, one of which is

AN ′σ = N ′σB, σ ∈ Σ.

Let now v0 be an arbitrary nonzero vector in N. It is an easy consequence of
Proposition 1.4 that there exists σ0 ∈ Σ such that N ′σ0

v0 6= 0 (take x = v0, y a unit
vector in H, and ε = 1/2).

The proof is completed by setting v = v0 and X = N ′σ0
. 2

Recall finally that for T ∈ B(H), then Lat(T ) is by definition the lattice of all
invariant subspaces of T and AlgLat T is the algebra of all operators A in B(H) such
that Lat(T ) ⊂ Lat(A). An operator T in B(H) is said to be reflexive if AlgLat(T ) =
WT , the smallest unital subalgebra of B(H) that contains T and is closed in the
weak operator topology on B(H).

Corollary 2.3. Suppose that A is an arbitrary nonreflexive contraction in B(H)
such that the spectrum of A contains the unit circle. Let also B, C, and D be
arbitrary operators in B(H). Then either i) or ii) of Theorem 1.2 is valid.

Proof. One knows from [2, Corollary 7.3] that every such operator A has a n.h.s. 2

3. Applications

In this section we show that in certain situations Theorem 1.2 can be applied
to yield a n.h.s. for the operator TC in (1.1).
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Proposition 3.1. Suppose A ∈ B(H) has a n.h.s., and B is an arbitrary operator
in B(H) such that B commutes with A. Then the operator Q ∈ B(H ⊕H) given
matricially by

Q =

(
A 1H
0 B

)
has a n.h.s.

Proof. We know from Theorem 1.2 that either Q or

Q̃ =

(
B 1H
0 A

)
has a n.h.s., so it suffices to prove that Q and Q̃ are similar, which we now do. It
is well-known that the operator S ∈ B(H ⊕H) given by

S =

(
1H 0
X 1H

)
,

where X is arbitrary in B(H), is invertible, and

S−1 =

(
1H 0
−X 1H

)
.

Therefore we calculate S−1QS, where X is yet to be chosen. Thus

S−1QS =

(
1H 0
−X 1H

)(
A 1H
0 B

)(
1H 0
X 1H

)
=

(
A+X 1H

−XA+ (−X +B)X −X +B

)
=

(
B 1H
0 A

)
= Q̃

if X is chosen to be X = B −A. 2

The following shows that Theorem 1.2 can be useful in obtaining a n.h.s. for
certain classes of operators.

Theorem 3.2. Suppose A ∈ L(H) has a n.h.s., and B and C are arbitrary
operators in L(H) that commute with A, with C invertible. Then

TC =

(
A C
0 B

)
has a n.h.s.

Proof. We know from Theorem 3.1 that

Q =

(
A 1H
0 B

)
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has a n.h.s., and the calculation(
C−1 0

0 1H

)(
A C
0 B

)(
C 0
0 1H

)
=

(
C−1AC 1H

0 B

)
=

(
A 1H
0 B

)
shows that TC and Q are similar. 2

Remark 3.3. It would be interesting to show that Theorem 3.2 remains valid
without the commutativity assumptions made there.
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