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Abstract. We investigate connections in the classes of rings with chain property and the

lattice of strongly hereditary radicals.

1. Introduction

In this paper we will study associative rings, not necessarily with identity. The
notation I�A means that I is an ideal of a ring A. Recall that a (Kurosh-Amitsur)
radical γ is a class of rings which

(i) is closed under homomorphic images,

(ii) is closed under extensions ( for I an ideal of the ring A, if I and A/I are in
γ, then also A ∈ γ ),

(iii) has the inductive property ( if I1 ⊆ I2 ⊆ . . . ⊆ Iλ . . . is a chain of ideals in
the ring A = ∪Iλ and each Iλ ∈ γ, then A ∈ γ ).

We denote by L (M), the lower radical class generated by a class M of rings. It is
well known that the collection L of all radical classes forms a complete lattice with
respect to inclusion of radical classes, where the meet and the join of a family of
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radical classes γλ, λ ∈ Λ are defined by

∧
λ∈Λ

γλ = ∩
λ∈Λ

γλ and ∨
λ∈Λ

γλ = L

(
∪
λ∈Λ

γλ

)
,

respectively. A radical class will always mean a Kurosh-Amitsur radical class. Some-
times we say only radical for a radical class. For the basic facts and terminology of
radical theory we refer to [1]. Although collections of radicals do not form a set, it
is custommary to talk about lattices of radicals. We denote by Ass the class of all
associative rings. We recall, a radical γ is small [2, 6] if and only if

γ ∨ γ′ ̸= Ass

for each proper radical γ′. Dually, call a non zero radical γ large if and only if

γ ∩ γ′ ̸= 0

for each proper radical γ′.
Let M be a class of rings. We recall that M is an universal class of rings, if M

is closed under homomorphic images and ideals. From [3], recall a relation σ on the
class of rings is called an H relation if σ satisfies the following properties:

(i) BσA implies B is subring of A,

(ii) if BσA and f is a homomorphism of A, then f(B)σf(A),

(iii) if BσA and I �A then (B ∩ I)σI.

In this paper we assume that the H relation σ satisfies also the following additional
condition:

(iv) if f is a homomorphism of A and f(B)σf(A) then also BσA.

We also recall, a class M of rings is said to be σ-hereditary if BσA ∈ M implies
B ∈ M.

There exist many such H relations with property (iv) (see [3]).

Proposition 1.1.([3, Theorem 4]) Let σ be an H relation. If M is a class of rings
which is closed under homomorphic images and is σ-hereditary, then L(M) is also
σ−hereditary.

2. Chain Rings

Definition 2.1. A ring A is said to have the chain property if either

S ⊆ S1 or S1 ⊆ S

for any subrings S and S1 of A.
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We denote by ⟨a⟩ the subring of A generated by the element a ∈ A.

Proposition 2.2. A ring A has the chain property if and only if either

⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩

for any a, b ∈ A.

Proof. (⇒) clear.
(⇐) Suppose that the subrings S, S1 of A fulfills S * S1 and S1 * S. Then
there exist elements a, b of A such that a /∈ S, a ∈ S1 and b /∈ S1, b ∈ S. By the
assumption, we have either ⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩. If ⟨a⟩ ⊆ ⟨b⟩ then ⟨a⟩ ⊆ ⟨b⟩ ⊆
S . Hence a ∈ S. This is a contradiction. Therefore, ⟨b⟩ ⊆ ⟨a⟩ ⊆ S1. Thus b ∈ S1,
again a contradiction. Hence we have either S ⊆ S1 or S1 ⊆ S. It shows that A is
a ring with the chain property. 2

Corollary 2.3. Let A be a ring with the chain property. Then A is commutative.

Proof. We consider elements a, b ∈ A. Then either ⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩ by
Proposition 2.2. Suppose that ⟨a⟩ ⊆ ⟨b⟩. Then ⟨b⟩ is a commutative ring we have
[a, b] = 0. 2

Let CH be the class of rings defined by

CH = {A | A is a ring with the chain property}

A class M of rings said to be matrix-extensible if A ∈ M if and only if the matrix
ring Mn(A) ∈ M for any natural number n.

Corollary 2.4. CH is not matrix extensible.

Proof. It is easy to see that Zp ∈ CH, where p is a prime number. IfMn(Zp) ∈ CH,
where n ≥ 2, then by Corollary 2.3, Mn(Zp) is a commutative ring. But Mn(Zp) is
not commutative. Thus Mn(Zp) /∈ CH. 2

We recall that a class M of rings said to be strongly hereditary if it satisfies: If
A is a ring in M, then every subring S of A is in M.

Proposition 2.5. CH is a strongly hereditary universal class of rings.

Proof. We shall show that CH is strongly hereditary. Let A ∈ CH and S is a
subring of A. Since A has the chain property, for any a, b ∈ S ⊆ A, we have
either ⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩. Thus, by Proposition 2.2, S has the chain property.
This shows that CH is a strongly hereditary. In particular, CH is hereditary class
of rings. Now we claim that CH is closed class under homomorphic images. Let
A = A/H be a homomorphic image of A ∈ CH. We consider any subrings S, S1

of A. Then there exist subrings S, S1 of A such that S =
S

H
, S1 =

S1

H
, where

H ⊆ S ∩ S1. Since A is in CH, we have either S ⊆ S1 or S1 ⊆ S. If S ⊆ S1, then

S =
S

H
⊆ S1

H
= S1. Therefore S ⊆ S1. The other case gives S1 ⊆ S. 2
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Proposition 2.6. CH has the inductive property.

Proof. Let A = ∪Iα be a ring, where

I1 ⊆ I2 ⊆ . . . ⊆ Iα ⊆ . . .

with each Iα � A and Iα ∈ CH. We consider any elements a, b ∈ A. Then there
exists Iα, such that a, b ∈ Iα. Since Iα ∈ CH, we have either ⟨a⟩ ⊆ ⟨b⟩ or ⟨b⟩ ⊆ ⟨a⟩.
Therefore, by Proposition 2.2, A ∈ CH. 2

Theorem 2.7. L(CH) is strongly hereditary and large in the lattice of all strongly
hereditary radicals. Moreover it contains all atoms of the lattice of all strongly
hereditary radicals.

Proof. We shall show that L(CH) is strongly hereditary and by Proposition 1.1,
L(CH) is strongly hereditary in the special case σ =“subring of”. Now we claim
that L(CH) is a large radical in the lattice of all strongly hereditary radicals.

First of all, we will be see that every non zero strongly hereditary radical γ
contains a prime field Zp or a simple zero ring Z0

p with prime order. Let us consider
a ring A ∈ γ and a nonzero element a ∈ A. Since γ is strongly hereditary, the subring
⟨a⟩ ∈ γ. Using Zorn’s lemma, there exists an ideal I of ⟨a⟩ which is maximal respect
to a /∈ I. Then the factor ring ⟨a⟩ = ⟨a⟩/I is a simple ring and ⟨a⟩ ∈ γ.

If ⟨a⟩
2
= 0, then by the simplicity of ⟨a⟩ , ⟨a⟩ is a zero ring of prime order. If

⟨a⟩ 2 ̸= 0 then by the commutativity of ⟨a⟩, ⟨a⟩ is a field. Thus the subring of ⟨a⟩
generated by the unit element of ⟨a⟩ is isomorphic to the ring Z of integers or to the
prime field Zp of p elements. By the strong hereditariness of γ the relation ⟨a⟩ ∈ γ
implies Z ∈ γ or Zp ∈ γ holds and in both cases Zp ∈ γ. Thus every strongly
hereditary radical γ contains either a finite prime field or a simple zero-ring with
prime order. But it is clear that CH contains all finite prime fields and all simple
zero-rings with prime order. Thus L(CH) ∩ γ ̸= 0, for every strongly hereditary
radical 0 ̸= γ. Hence L(CH) is a large radical in the lattice of all strongly hereditary
radicals.

From the above, every atom γ0 in the lattice of all strongly hereditary radicals
is generated by either a finite prime field or a simple zero-ring of prime order. Thus
γ0 ⊆ L(CH). 2

We denote by Ls the collection of all strongly hereditary and large radicals.

Proposition 2.8. Ls is a complete sublattice in the lattice of all strongly hereditary
radicals. Ls is atomic and not coatomic.

Proof. We consider radicals γ1, . . . , γα . . . such that γα ∈ Ls. Since γα ∈ Ls and
each γs is large in the lattice of all strongly hereditary radicals, each γα contains all
simple zero-rings with prime order and all prime fields. By Proposition 1.1, L(∪γα)
is strongly hereditary. It is clear that ∩γα is strongly hereditary. Hence L(∪γα) and
∩γα contain all simple zero-rings with prime order and all prime fields. Therefore
L(∪γα) and ∩γα are large radicals in the class of all strongly hereditary radicals.
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We denote by γ0 the lower radical generated by all simple zero-rings with prime
order and all prime fields. Then it is clear that γ0 is an atom in Ls.

Let X = {x1, . . . , xλ, . . .} be an infinite set of symbols. Then by Proposition
2.8 in [2], the lower radical L(F [X]) determined by the free ring F [X] is strongly
hereditary. It is also σ-hereditary and small in the lattice of all radicals. Moreover,
L(F [X]) is large in the lattice of all strongly hereditary radicals. Suppose that γ0

is a coatom in Ls. Then there exists a free ring F [X] such that F [X] /∈ γ0. Since
L(F [X]) is small in the lattice of all radicals, we have

L(γ0 ∪ L(F [X])) ̸= Ass.

Thus, Ls is not coatomic. 2

We denote by L, the collection of all radicals γ such that γ ∩ γα ̸= 0 for every
γα ∈ Ls.

Proposition 2.9. L is a complete sublattice in the lattice of all radicals.

Proof. Let A be a simple zero-ring with prime order or a prime field. Then L(A)
is strongly hereditary and an atom in the lattice of all hereditary radicals. Let us
consider γ1, . . . , γα, . . . ∈ L. Then L(A) ∩ γα ̸= 0 and also L(A) ⊆ γα. Hence
∩γα contains all simple zero-rings with prime order and all prime fields. Thus
(∩γα) ∩ γβ ̸= 0 and also L(∪γα) ∩ γβ ̸= 0 for every 0 ̸= γβ ∈ Ls. 2

Corollary 2.10. L is atomic and not coatomic.

Proof. This can be proved in a similar way as the proof of Proposition 2.8. 2

We recall from [4] the definition of an (hereditary) Amitsur ring and the defi-
nition of the radicals T and Ts. A ring A is said to be an (hereditary) Amitsur ring
if γ(A[x]) = (γ(A[x]) ∩ A)[x], for all (hereditary) radicals γ, respectively. Let us
recall T and Ts as follows:

T = {A | every prime homomorphic image of the ring A
is not a hereditary Amitsur ring}

and

Ts = {A | every prime homomorphic image of the ring A
has no nonzero ideal which is a hereditary Amitsur ring}.

Remark 2.11. T and Ts ∈ L.

A radical γ said to be prime-like if for every prime ring A, the polynomial ring
A[x] is γ-semisimple. Let as consider the following condition (h) and the class ch.

(h): If A is a ring with the chain property, then A ∼= S ⊆ A for every homomorphic
image A of A, where S is a subring of A.

ch = {A | A is a ring with condition (h)}
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Lemma 2.12. Let A ∈ ch and suppose A is without zero-divisors. Then A is a
field with char(A) = p where p is a prime number.

Proof. We shall show that a ∈ aA for every element a ∈ A. By Corollary 2.3, we
have aA � A. Let a ̸∈ aA, for an element a ∈ A. Then A = A/aA ̸= 0. It is clear
that (a + aA)2 ⊆ aA. Therefore A has a nonzero nilpotent element. By condition
(h), A has a nonzero nilpotent element,which is a contradiction. Thus a ∈ Aa for
every a ∈ A. There exists an element e such that ae = ea = a. It is clear that
a ∈ a2A. Thus there exists x ∈ A such that ax = e. Hence A is a field. Suppose
that charA = 0 and let e be the unit element of A. Then there exists a subring S
of A which is isomorphic to Z. Therefore S does not have the chain property which
is a contradiction. 2

Lemma 2.13. Let A ∈ ch. If A has a nonzero zero-divisor, then A is a nil ring.

Proof. By Proposition 2.2, A has a nonzero nilpotent element. Put

I = {a ∈ A|an = 0, for a natural number n}.

It is clear that I = N(A), where N is the nil radical. Moreover,

A = A/N(A) ∼= S ⊂ A

and S has a nonzero nilpotent element. Therefore, since A is commutative ring
N(A/N(A)) ̸= 0, which is a contradiction. Thus A = N(A). 2

Proposition 2.14. Let A ∈ ch. If A has a nonzero zero-divisor then β(A) = A ,
where β is the Baer radical.

Proof. First of all, we claim that 0 ̸= β(A) for any ring A ∈ ch which has a nonzero
zero-divisor. Note that by Lemma 2.13, A is a nil ring. Let us consider the case
β(A) ̸= A. Then there exists an element a ∈ A such that an = 0 and aA ̸= 0. If
aA = A, then 0 ̸= A = aA = a2A = . . . = anA = 0. This is impossible. Hence
aA ( A. Therefore there exists a non-zero element b ∈ A and b /∈ aA with bm = 0
for some natural m. It is clear that aA ( ⟨b⟩. Thus aA is a nilpotent ideal of A.
Therefore 0 ̸= β(A), for any ring A ∈ ch which has a nonzero zero-divisor. Since
β(A) ̸= A there exists c ∈ A such that β(A) ( Zc+ cA�A. It is clear that Zc+ cA
is a nilpotent ideal of A. Thus β(A/β(A)) ̸= 0. It is a contradiction. 2

Corollary 2.15. Let A ∈ ch. Then either A is a field or A = β(A).

Proof. It follows from Lemma 2.12, Proposition 2.14. 2

A radical γ has the Amitsur property if

γ(A[x]) = (γ(A[x]) ∩A)[x], for all ringsA.

Theorem 2.16.([4]) Every β-radical ring A is a hereditary Amitsur ring.

Proposition 2.17. Let γ ⊆ β be a radical. Then γ is a prime-like radical.
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Proof. Clear. 2

For a radical γ, let γx = {A | A[x] ∈ γ}.
Proposition 2.18.([5, Corollary 13]) Let γ be a radical with β ⊆ γ. Then γ is
prime-like if and only if γx = β and γ has he Amitsur property.

Theorem 2.19. γ = L(β ∪ L(ch)) has the Amitsur property and γx = β.

Proof. By Corollary 2.15, ch = C ∪ D and C ∩ D = ∅, where C is the class of
Baer radical rings with condition (h) and D is the class of fields with the chain
property. By Proposition 2.17 L(C) is prime-like and it is not hard to check that
L(C)(A[x]) = 0, for all prime rings A. Hence L(C ∪D) = L(L(C) ∪ L(D)). Thus
L(ch) is prime-like and also γ is prime-like. Hence by Proposition 2.18 we have
β = γx and γ has the Amitsur property. 2

We put F = {all fields}. Let U (M) denote the upper radical class generated by
a class M of rings.

Corollary 2.20. If A ∈ U (F)∩L (β ∪ L(ch)) then A is a hereditary Amitsur ring.

Proof. Let A ∈ U (F) ∩ L (β ∪ L(ch)) be a nonzero semiprime ring. Then A has a
nonzero accessible subring B ∈ D, where D is the class of fields with chain property.
Since B is a field, we have B2 = B�A and also B is direct sumand of A. Then there
exists a ring B′ such that A = B⊕B′. Therefore we have B ∈ U (F)∩L (β ∪ L(ch)) .
Since B is a field we have

B ∈ F ∩ U (F) = 0

which is a contradiction. Hence U (F)∩L (β ∪ L(ch)) = β. Therefore, Theorem 2.16
implies that A is a hereditary Amitsur ring. 2
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