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Abstract. A Q-module is a module in which every nonzero submodule of M is a finite

product of primary submodules of M . This paper is devoted to study some properties of

Dedekind modules and Q-modules.

1. Introduction

Throughout this paper all rings are considered commutative rings with iden-
tiry and all modules are considered unitary. Let R be a ring and M an R-
module. A proper submodule N of M is a prime submodule if for each r ∈ R
and for each m ∈ M with rm ∈ N , we have m ∈ N or r ∈ (N :R M), where
(N :R M) = Ann(M/N) = {r ∈ R|rM ⊆ N}. Also N is called a primary submod-
ule of M if for each r ∈ R and for each m ∈ M with rm ∈ N , we have m ∈ N
or rn ∈ (N :R M) for a positive integer n. We say that a submodule N of M is a
radical submodule of M if N =

√
N , where

√
N =

√
(N :R M)M .

The R-module M is said to be a multiplication R-module if every submodule N
of M has the form IM for some ideal I of R. If M be a multiplication R-module and
N a submodule of M , then N = IM for some ideal I of R. Hence I ⊆ (N :R M)
and so N = IM ⊆ (N :R M)M ⊆ N . Therefore N = (N :R M)M [8]. Let M be
a multiplication R-module, N = IM and L = JM be submodules of M for ideals
I and J of R. Then, the product of N and L is denoted by N.L or NL and is
defined by IJM [5]. An R-module M is called a cancellation module if IM = JM
for two ideals I and J of R implies I = J [1]. By [13, Corollary 1 to Theorem
9], finitely generated faithful multiplication modules are cancellation modules. It
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follows that if M is a finitely generated faithful multiplication R-module, then
(IN :R M) = I(N :R M) for all ideals I of R and all submodules N of M . If R is
an integral domain and M a faithful multiplication R-module, then M is a finitely
generated R-module [9]. Let R be a ring, Z(R) the set of zero-divisors of R and
S = R \Z(R). Then T (R) denotes the total quotient ring of R. A non-zero-divisor
of a ring R is called a regular element and an ideal of R is said to be regular if it
contains a regular element. For a non-zero ideal I of R, Let

I−1 = {x ∈ T (R) : xI ⊆ R}.

In this case II−1 ⊆ R. I is called an invertible ideal of R if II−1 = R. An integral
domain R is called a Dedekind domain if every nonzero ideal of R is invertible.

Let M be an R-module. An element r ∈ R is said to be a zero-divisor on M
if rm = 0 for some nonzero element m ∈ M . We denote by Z(M) the set of all
zero-divisors of M . It is easy to see that Z(M) is not necessarily an ideal of R,
but it has the property that if a, b ∈ R with ab ∈ Z(M), then either a ∈ Z(M) or
b ∈ Z(M). Let M be an R-module and set

T = {t ∈ S : for all m ∈M, tm = 0 implies m = 0} = (R \ Z(M)) ∩ (R \ Z(R)).

Then T is a multiplicatively closed subset of R with T ⊆ S, and if M is torsion-free
then T = S. In particular, T = S if M is a faithful multiplication R-module [9,
Lemma 4.1]. Let N be a nonzero submodule of M . Then we write N−1 = (M :RT

N) = {x ∈ RT : xN ⊆ M}. Then N−1 is an R-submodule of RT , R ⊆ N−1

and NN−1 ⊆ M . We say that N is invertible in M if NN−1 = M . Clearly
0 6= M is invertible in M . An R-module M is called a Dedekind module if every
nonzero submodule of M is invertible. In Section 2, we investigate some properties
of Dedekind modules. It is proved that if M is a faithful multiplication R-module
over an integral domain R, then M is Dedekind R-module if and only if every
proper submodule of M is a finite product of prime submodules of M . In Section
3 we prove some results on Q-modules. Let R be a ring and M a finitely generated
faitful multiplication R-module. We show that if M is a Noetherian module with
dim(M) = 1, then M is a Q-module. Finally we prove that if M a Noetherian
finitely generated multiplication module over R, then M is a Q-module if and only
if every prime submodule which is not a maximal submodule of M is a multiplication
submodule.

Here we list some preliminaries and results used throughout the paper.

Lemma 1.1([9]). Let M be multiplication module and let N be a submodule of M .
Then N = Ann(M/N)M

Lemma 1.2.([9, Theorem 2.5]) Let M be a nonzero multiplication R-module. Then,

(i) every proper submodule of M is contained in a maximal submodule of M ;

(ii) K is a maximal submodule of M if and only if there exists a maximal ideal
P of R such that K = PM 6= M .
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Theorem 1.3.([9, Corollary 2.11]) Let R be ring and M an R-module. The follow-
ing statements are equivalent for a proper submodule N of M :

(i) N is a prime submodule of M ;

(ii) Ann(M/N) is a prime ideal of R;

(iii) N = PM for some prime ideal P of R whit Ann(M) ⊆ P .

Theorem 1.4.([9, Theorem 3.1]) Let R be a ring and M a faithful multiplication
R-module. Then the following statements are equivalent:

(i) is finitely generated;

(ii) AM ⊆ BM if and only if A ⊆ B;

(iii) for each submodule N of M , there exists a unique ideal I of R such that
N = IM ;

(iv) M 6= AM for any proper ideal A of R;

(v) M 6= PM for any maximal ideal P of R.

Definition 1.5. Let R be a ring and M be an R-module and let N be a submodule
of M such that N = IM for same ideal I of R. Then, we say that I is a presentation
ideal of N .

Theorem 1.6.([5, Theorem 3.4]) Let N = IM and K = JM be submodules of
a multiplication R-module M . Then, the product of N and K is independent of
presentations of N and K.

Definition 1.7. Let R be a ring, M an R-module and N a submodule of M . Then
N is called decomposable if it has a primary decomposition N = Q1∩ ...∩Qn where
for each 1 ≤ i ≤ n, Qi is Pi-primary. Such a primary decomposition of N is said to
be a minimal primary decomposition if

(1) P1, ..., Pn are distinict prime ideal of R.

(2)
⋂n

i=1,i6=j * Qj for all j = 1, ..., n.

It is proved that every decomposable submodule of M has a minimal primary
decomposition.

Theorem 1.8([12]). Let R be a ring and M a Noetherian R-module. Then every
proper submodule of M is decomposable.

A commutative ring R is called a Q-ring if every ideal in R is a finite product of
primary ideals in R. First, the class of Noetherian Q-rings have been studied and
characterized by D. D. Anderson in [6]. Then Anderson and Mahaney in [7] have
studied Q-rings in general.
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2. Dedekind Modules

Proposition 2.1. Let R be a ring and M a multiplication R-module. If N,K,L
are submodules of M such that NK = NL and N is invertible, then K = L.

Proof. Let N,K,L are submodules of M such that NK = NL and N is invertible.
Then K = MK = N−1NK = N−1NL = ML = L. 2

Lemma 2.2. Let R be a ring, M a multiplication R-module and N1, · · · , Nn sub-
modules of M . Then the submodule N1 · · ·Nn is invertible if and only if for each
1 ≤ i ≤ n, Ni is invertible.

Proof. Let I1, I2, · · · , In be ideals of R such that N1 = I1M,N2 = I2M, · · · , Nn =
InM . Suppose N1N2 · · ·Nn is invertible submodule. If K is a fractional ideal of R
such that KN1N2 · · ·Nn = M , then for each i = 1, 2, · · · , n, we have,

(KI1I2 · · · Ii−1Ii+1 · · · In)Ni = (KI1I2 · · · Ii−1Ii+1 · · · In)IiM

= (KI1I2 · · · In)M = K(I1I2 · · · In)M = KN1N2 · · ·Nn = M.

So Ni is invertible. Conversely, suppose for each 1 ≤ i ≤ n, Ni is invertible. Then

(N−11 N−12 · · ·N−1n )(N1N2 · · ·Nn) = (N−11 N1)(N−12 N2) · · · (N−1n Nn) = M.

So N1N2 · · ·Nn is invertible submodule of M . 2

Lemma 2.3. Let R be an integral domain and M a faithful multiplication R-
module. If K1K2 · · ·Kn = N = L1L2 · · ·Lm where Ki, Li are prime submodules of
M and Ki is invertible then n = m and Ki = Li for each i = 1, 2, · · · , n.

Proof. The proof is by induction on n. Suppose n = 1 and K1 = N = L1L2 · · ·Lm

and J1, J2, · · · , Jn, I1, I2, · · · , Im are prime ideals of R such that Kj = JjM and
Li = IiM . So we have JM = I1I2 · · · ImM , since M is cancelative R-module
J = I1I2 · · · Im. So after reindexing J = I1, thus K1 = L1. If n > 1, choose one
of the Ki, say K1, such that K1 does not properly contain Ki, for i = 2, 3, · · · , n.
Since

I1I2 · · · ImM = L1L2 · · ·Lm = K1K2 · · ·Kn = J1J2 · · · JnM ⊂ K1

and M is cancelative, we have

I1I2 · · · Im = J1J2 · · · Jn ⊂ J1

and J1 is prime so by prime avoidenc Theorem there exists some Ii, say I1, is
contained in J1. Similarly since

J1J2 · · · Jn = I1I2 · · · Im ⊂ I1

so Ji ⊆ I1. Hence Ji ⊆ I1 ⊆ J1 and so Ki ⊆ L1 ⊆ K1. By the minimality of K1

we must have Ki = L1 = K1. Since K1 = L1 is invertible, Proposition 2.1 implies
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that K2K3 · · ·Kn = L2L3 · · ·Lm. Therefore by the induction hypothesis n = m
and after reindexing Ki = Li for i = 1, 2, · · · , n. 2

Proposition 2.4. Let R be a ring and M be a finitely generated faithful multi-
plication R-module in which every proper submodule is a finite product of prime
submodules. Then every proper ideal of R is a finite product of prime ideals of R.

Proof. Let I be a proper ideal of R. Then IM is a proper submodule of M , so
IM = K1K2 · · ·Kn where Ki, i = 1, 2, · · · , n is prime submodule of M , and there
exist prime ideals P1, P2, · · · , Pn of R such that Ki = PiM for each i = 1, 2, · · · , n.
So we have

IM = K1K2 · · ·Kn = (P1M)(P2M) · · · (PnM) = P1P2 · · ·Pn.

Since M is a finitely generated faithful multiplication R-module, M is a cancelative
module, hence we must have I = P1P2 · · ·Pn. 2

Theorem 2.5. Let R be a ring and M be a finitely generated faithful multiplication
R-module in which every proper submodule is the product of a finite number of prime
submodules. Then every invertible prime submodule of M is maximal.

Proof. Let N be an invertible prime submodule of M . So there exists prime ideal
P of R such that N = PM . Since N is invertible, P is an invertible ideal of R.
Hence, by [10, Theorem 6.5], P is a maximal ideal of R. Therefore N is maximal,
because M is cancelation R-module. 2

Proposition 2.6. Every faithful multiplication module over an integral domain is
a D1 module.

Proof. See [11, Remark 3.8]. 2

Theorem 2.7. Let R be an integral domain and M be a faithful multiplication R-
module in which every proper submodule is the product of a finite number of prime
submodules. Then every prime submodule of M is invertible.

Proof. Suppose N is a nonzero prime submodule of M and 0 6= a ∈ N . Then
Ra = K1K2 · · ·Kn where Pi is a prime submodule of M for all i = 1, 2, · · · , n. There
exist prime ideals P, P1, P2, · · · , Pn such that N = PM and for each 1 ≤ i ≤≤ n,
Ki = PiM . Since

(P1P2 · · ·Pn)M = (P1M)(P2M) · · · (PnM) = K1K2 · · ·Kn = Ra ⊆ N = PM

and M is a cancelation R-module, P1P2 · · ·Pn ⊆ P . Therefore for some k, Pk ⊆ P
and hence Kk ⊆ N . Since by Proposition 2.6, Ra is invertible, Kk is invertible,by
Lemma 2.2. HenceKk is invertible prime submodule. SoKk is maximal by Theorem
2.5, whence N = Kk. Therefore N is maximal and invertible. 2

Theorem 2.8. Let R be an integral domain and M be a faithful multiplication
R-module. Then M is Dedekind R-module if and only if every proper submodule of
M is a finite product of prime submodules of M .
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Proof. Let N be anonzero submodule of M . Choose maximal submodule KN such
that N ⊆ KN (M . If N = M , let KM = R. Now we have

K−1N N ⊆ K−1N KN ⊆M

therefore K−1N N is a submodule of M and contains N . If N is proper submodule
of M , then N ( K−1N N , because, if not

M = RM = RMRM = (N−1N)(K−1N KN )

= N−1(NK−1N )KN = N−1NKN = MKN = KN

is a contradiction. Let S be the set of all submodules of M and define a function
f : S → S by N 7→ K−1N N . Given a proper submodule N , there exists a function
φ : N → S such that φ(0) = N and φ(n + 1) = f(φ(n)). If we denote φ(n) by Nn

and KNn
by Kn, then we have an ascending chain of submodules

N = N0 ⊂ N1 ⊂ N2 ⊂ · · ·

such that Nn+1 = f(Nn) = K−1n Nn. Since M is Dedekind, M is Notherian R-
module and N is proper submodule of M , there is a least integer l such that

N = N0 ( N1 ( · · · ( Nl−1 ( Nl = Nl+1.

Thus Nl = Nl+1 = f(Nl) = K−1l Nl. So we must have Nl = M . Consequently,

M = Nl = f(Nl−1) = K−1l−1Nl−1

whence
Nl−1 = Nl−1M = Nl−1K

−1
l−1Kl−1 = MKl−1 = Kl−1.

Since Kl−1 = Nl−1 ( Nl = M , Kl−1 is a maximal submodule of M . The minimality
of l insures that each of K0, · · · ,Kl−2 is also maximal, because, if not we have
Ki = M , whence

Ni+1 = K−1i Ni = M−1Ni = RNi = Ni

is a contradiction. Now we have

Kl−1 = Nl−1 = K−1l−2Nl−2 = K−1l−2K
−1
l−3Nl−3 = · · · = K−1l−2 · · ·K

−1
1 K−10 N.

Consequently, since each Ki is invertible,

(K0K1 · · ·Kl−2)Kl−1 = (K0K1 · · ·Kl−2)K−1l−2 · · ·K
−1
1 K−10 N = N.

Conversely, by Lemma 2.2 and Theorem 2.7, M is a Dedekind R-module. 2
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3. Q-modules

Definition 3.1. Let R be a ring and M an R-module. Then M is called a Q-module
if every submodule of M is a finite product of primary submodules of M .

It is clear that a Q-module is a Dedekind module.

Theorem 3.2. Let R be a ring and M a finitely generated faithful multiplication
R-module. If M is a Q-module, then

(1) MS is a Q-module for multiplicative subset S of R.

(2) M/N is a Q-module for each submodule N of M .

Proof. (1) Let  be a submodule of MS . Then  ∩M is a submodule of M . So
∩M = P1...Pn where for each 1 ≤ i ≤ n, Pi is a primary submodule of M . Hence
 = S−1(∩M) = S−1(P1...Pn) = (S−1P1)...(S−1Pn) which is a product of primary
submodules of MS . Therefore MS is a Q-module.
(2) Let K/N be a submodule of M/N where K is a submodule of M . Then K =
P1...Pn where for each 1 ≤ i ≤ n, Pi is a primary submodule of M . Hence K/N =
P1...Pn/N = (P1/N)...(Pn/N) which is a product of primary submodules of M/N .
Therefore M/N is a Q-module. 2

Remark 3.3. Let R be a ring, M a multiplication R-module, I an ideal of R and
N a submodule of M . Then (N :R M)Mn = (N :R M)MMn−1 = NMn−1 =
NMMn−2 = ... = NM = N and IMn = I(RM...RM) = IM .

Lemma 3.4. Let R be a ring, M a finitely generated multiplication R-module, I
an ideal of R and N a submodule of M . Then

(1) N is a product of primary submodules of M if and only if (N :R M) is a
product of primary ideals of R.

(2) I is a product of primary ideals of R if and only if IM is a product of primary
submodules of M .

Proof. (1) Let N = P1...Pn where for each 1 ≤ i ≤ n, Pi is a primary submodule
of M . Then (N :R M) = (P1...Pn :R M) = (P1 :R M)...(Pn :R M) where for each
1 ≤ i ≤ n, (Pi :R M) is a primary ideal of R, by [3, Lemma 4]. Conversely, let
(N :R M) = P1...Pn where for each 1 ≤ i ≤ n, Pi is a primary ideals of R. Hence,
by [3, Lemma 4], N = (N :R M)Mn = (P1...Pn)Mn = (P1M)...(PnM) where for
each 1 ≤ i ≤ n, PiM is a primary submodule of M .
(2) let I = P1...Pn where for each 1 ≤ i ≤ n, Pi is a primary ideals of R. Hence,
by [3, Lemma 4], IM = IMn = (P1...Pn)Mn = (P1M)...(PnM) where for each
1 ≤ i ≤ n, PiM is a primary submodule of M . Conversely, let IM = P1...Pn where
for each 1 ≤ i ≤ n, Pi is a primary submodule of M . Then I = (IM :R M) =
(P1...Pn :R M) = (P1 :R M)...(Pn :R M) where for each 1 ≤ i ≤ n, (Pi :R M) is a
primary ideal of R, by [3, Lemma 4]. 2

Now we have the following Corollary.
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Corollary 3.5. Let R be a ring and M be a finitely generated multiplication R-
module. Then R is a Q-ring if and only if M is a Q-module.

Theorem 3.6. Let R be a ring and M be a finitely generated multiplication R-
module. If a submodule N of M is a finite product of primary submodules, then
there are only finitely many prime submodules of M which are minimal over N .

Proof. Let N be a product of primary submodules of M . Then, by Lemma 3.4,
(N :R M) is a product of primary ideals. Hence, by [6, Lemma 4], there are only
finitely many minimal prime submodules over (N :R M).

Therefore, by [3, Lemma 4], there are only finitely many prime submodules of
M which are minimal over N . 2

Corollary 3.7. Let R be a ring and M be a finitely generated multiplication R-
module. If M is a Q-module, then there are only finitley many minimal prime
submodules over any submodule of M .

Lemma 3.8. Let R be a ring, M a multiplication R-module and N,K submodules
of M . If

√
N +

√
K = M , then N +K = M . Moreover, NK = N ∩K.

Proof. Let
√
N+
√
K = M . Then (

√
(N :R M)+

√
(K :R M))M =

√
(N :R M)M+√

(K :R M)M = M . So
√

(N :R M) +
√

(K :R M) = R. Hence (N :R M) + (K :R
M) = R and thus (N :R M)(K :R M) = (N :R M) ∩ (K :R M). Therefore
N + K = (N :R M)M + (K :R M)M = M . Moreover, KN = (N :R M)M(K :R
M)M = (N :R M)M ∩ (K :R M)M = N ∩K. 2

Theorem 3.9. Let R be a ring and M a finitely generated faitful multiplication R-
module. Let M be a Noetherian module with dim(M) = 1. Then M is a Q-module.

Proof. Let N be a submodule of M . Then N has a minimal primary decomposition,
say, N = Q1 ∩Q2... ∩Qn where for each 1 ≤ i ≤ n, Qi is a Pi-primary submodule
of M . Since dim(M) = 1, each nonzero prime submodule of M is maximal. So for
each 1 ≤ i ≤ n, Pi is a maximal submodule of M . Hence, Pi +Pj = M for all i 6= j.

Thus, by Lemma 3.8, Qi +Qj = M for all i 6= j. Then N = Q1 ∩Q2... ∩Qn =
Q1Q2...Qn. Therefore M is a Q-module. 2

Note that if R is a ring, M is a multiplication R-module and N a submodule
of M , then N is a multiplication R-submodule of M if and only if (N :R M) is a
multiplication ideal of R. For this, let N be a multiplication R-submodule of M
and I an ideal of R such that I ⊆ (N :R M). Then IM ⊆ N . So IM = KN for
an ideal K of R. Hence I = (IM :R M) = K(N :R M). Therefore (N :R M) is a
multiplication ideal of R. Conversely, let (N :R M) be a multiplication ideal of R
and K a submodule of N . Then (K :R M) ⊆ (N :R M). So (K :R M) = I(N :R M)
for an ideal I of R. Hence K = IN . Therefore N is a multiplication submodule of
M .

Proposition 3.10. Let R be a ring, M a multiplication R-module and N be a
multiplication submodule of M . If P is a prime submodule of M with P ( N , then
P ⊆

⋂∞
n=1N

n.
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Proof. Let N be a multiplication submodule of M . Then (N :R M) is a mul-
tiplication ideal of R. Let P be a prime submodule of M with P ( N . Then
(P :R M) is a prime ideal of R with (P :R M) ( (N :R M). Hence, by [6],
(P :R M) ⊆

⋂∞
n=1(N :R M)n. Therefore

P = (P :R M)Mn ⊆
∞⋂

n=1

(N :R M)nMn =

∞⋂
n=1

Nn. 2

It is shown that if R is a ring and M is a finitely generated faithful multiplication
R-module, then M is a Noetherian R-module if and only if R is a Noetherian ring.

Theorem 3.11. Let R be a ring and M a Noetherian finitely generated multiplica-
tion R-module. Then M is a Q-module if and only if every prime submodule which
is not a maximal submodule of M is a multiplication submodule.

Proof. It is obvious that M is a Noetherian module if and only if R is a Noetherian
ring. Then M is a Q-module if and only if R is a Q-ring by Theorem 3.5, if and
only if every prime ideal which is not maximal in R is multiplication by [6, Theorem
10], if and only if every prime submodule which is not a maximal submodule in M
is a multiplication submodule. 2
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