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ABSTRACT. A @-module is a module in which every nonzero submodule of M is a finite
product of primary submodules of M. This paper is devoted to study some properties of
Dedekind modules and @-modules.

1. Introduction

Throughout this paper all rings are considered commutative rings with iden-
tiry and all modules are considered unitary. Let R be a ring and M an R-
module. A proper submodule N of M is a prime submodule if for each r € R
and for each m € M with rm € N, we have m € N or r € (N :g M), where
(N:g M)=Ann(M/N)={r € RjrM C N}. Also N is called a primary submod-
ule of M if for each » € R and for each m € M with rm € N, we have m € N
or r € (N :g M) for a positive integer n. We say that a submodule N of M is a
radical submodule of M if N = /N, where VN = /(N :x M)M.

The R-module M is said to be a multiplication R-module if every submodule V
of M has the form I M for some ideal I of R. If M be a multiplication R-module and
N a submodule of M, then N = IM for some ideal I of R. Hence I C (N :gp M)
and so N =IM C (N :g M)M C N. Therefore N = (N :g M)M [8]. Let M be
a multiplication R-module, N = IM and L = JM be submodules of M for ideals
I and J of R. Then, the product of N and L is denoted by N.L or NL and is
defined by IJM [5]. An R-module M is called a cancellation module if IM = JM
for two ideals I and J of R implies I = J [1]. By [13, Corollary 1 to Theorem
9], finitely generated faithful multiplication modules are cancellation modules. It
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follows that if M is a finitely generated faithful multiplication R-module, then
(IN :p M) =1I(N :p M) for all ideals I of R and all submodules N of M. If R is
an integral domain and M a faithful multiplication R-module, then M is a finitely
generated R-module [9]. Let R be a ring, Z(R) the set of zero-divisors of R and
S =R\ Z(R). Then T(R) denotes the total quotient ring of R. A non-zero-divisor
of a ring R is called a regular element and an ideal of R is said to be regular if it
contains a regular element. For a non-zero ideal I of R, Let

I'' ={x € T(R) : zI C R}.

In this case IT~! C R. I is called an invertible ideal of R if II~' = R. An integral
domain R is called a Dedekind domain if every nonzero ideal of R is invertible.

Let M be an R-module. An element r € R is said to be a zero-divisor on M
if rm = 0 for some nonzero element m € M. We denote by Z(M) the set of all
zero-divisors of M. It is easy to see that Z(M) is not necessarily an ideal of R,
but it has the property that if a,b € R with ab € Z(M), then either a € Z(M) or
be Z(M). Let M be an R-module and set

T={teS: forall me M,tm =0 implies m =0} = (R\ Z(M)) N (R\ Z(R)).

Then T is a multiplicatively closed subset of R with 7" C S, and if M is torsion-free
then T = S. In particular, T = S if M is a faithful multiplication R-module [9,
Lemma 4.1]. Let N be a nonzero submodule of M. Then we write N1 = (M g,
N) ={x € Ry : «aN C M}. Then N~! is an R-submodule of Ry, R C N~!
and NN-! C M. We say that N is invertible in M if NN=1 = M. Clearly
0 # M is invertible in M. An R-module M is called a Dedekind module if every
nonzero submodule of M is invertible. In Section 2, we investigate some properties
of Dedekind modules. It is proved that if M is a faithful multiplication R-module
over an integral domain R, then M is Dedekind R-module if and only if every
proper submodule of M is a finite product of prime submodules of M. In Section
3 we prove some results on (J-modules. Let R be a ring and M a finitely generated
faitful multiplication R-module. We show that if M is a Noetherian module with
dim(M) = 1, then M is a @-module. Finally we prove that if M a Noetherian
finitely generated multiplication module over R, then M is a -module if and only
if every prime submodule which is not a maximal submodule of M is a multiplication
submodule.
Here we list some preliminaries and results used throughout the paper.

Lemma 1.1([9]). Let M be multiplication module and let N be a submodule of M.
Then N = Ann(M/N)M

Lemma 1.2.([9, Theorem 2.5]) Let M be a nonzero multiplication R-module. Then,
(i) every proper submodule of M is contained in a mazimal submodule of M ;

(ii) K is a mazimal submodule of M if and only if there exists a mazimal ideal
P of R such that K = PM # M.
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Theorem 1.3.([9, Corollary 2.11]) Let R be ring and M an R-module. The follow-
ing statements are equivalent for a proper submodule N of M :

(i) N is a prime submodule of M ;
(ii) Ann(M/N) is a prime ideal of R;
(ili) N = PM for some prime ideal P of R whit Ann(M) C P.

Theorem 1.4.([9, Theorem 3.1]) Let R be a ring and M a faithful multiplication
R-module. Then the following statements are equivalent:

(i) s finitely generated;
(il) AM C BM if and only if A C B;
(iii) for each submodule N of M, there exists a unique ideal I of R such that
N =1IM;
(iv) M # AM for any proper ideal A of R;
(v) M # PM for any mazimal ideal P of R.

Definition 1.5. Let R be a ring and M be an R-module and let N be a submodule
of M such that N = I'M for same ideal I of R. Then, we say that [ is a presentation
ideal of N.

Theorem 1.6.([5, Theorem 3.4]) Let N = IM and K = JM be submodules of
a multiplication R-module M. Then, the product of N and K is independent of
presentations of N and K.

Definition 1.7. Let R be a ring, M an R-module and N a submodule of M. Then
N is called decomposable if it has a primary decomposition N = Q1 N...NQ,, where
for each 1 < i <mn, Q; is P;-primary. Such a primary decomposition of N is said to
be a minimal primary decomposition if

(1) Py,..., P, are distinict prime ideal of R.
(2) Miyig; €Qjforall j=1,..,n

It is proved that every decomposable submodule of M has a minimal primary
decomposition.

Theorem 1.8([12]). Let R be a ring and M a Noetherian R-module. Then every
proper submodule of M is decomposable.

A commutative ring R is called a Q-ring if every ideal in R is a finite product of
primary ideals in R. First, the class of Noetherian Q-rings have been studied and
characterized by D. D. Anderson in [6]. Then Anderson and Mahaney in [7] have
studied @-rings in general.
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2. Dedekind Modules

Proposition 2.1. Let R be a ring and M a multiplication R-module. If N, K, L
are submodules of M such that NK = NL and N is invertible, then K = L.
Proof. Let N, K, L are submodules of M such that NK = NL and N is invertible.
Then K = MK = N"'NK =N"'NL=ML=L. O

Lemma 2.2. Let R be a ring, M a multiplication R-module and Ny,--- , N, sub-
modules of M. Then the submodule Ny --- N, is invertible if and only if for each
1 <1i < n, N; is invertible.

Proof. Let Iy, I5,--- , I, be ideals of R such that Ny = [{M, Ny = IbM,--- ,N,, =
I,M. Suppose N1 Ny --- N, is invertible submodule. If K is a fractional ideal of R
such that KN1N5---N,, = M, then for each i = 1,2,--- ,n, we have,

(KIdy---Iiqlipy -+ In)Ny = (KL Iy - - - Ly Ly - - In) LM
=(Khly - I,)M = K(1Iy---I,)M = KNyNy--- N, = M.
So N; is invertible. Conversely, suppose for each 1 < i < n, N; is invertible. Then
(NTING o N (NN - Ny) = (NN (N ' Ng) - (NP N,) = M

So N1 Ny --- N, is invertible submodule of M. O

Lemma 2.3. Let R be an integral domain and M a faithful multiplication R-
module. If K1Ko-+- K, =N = L1Ly---L,, where K;, L; are prime submodules of
M and K; is invertible then n =m and K; = L; for eachi=1,2,--- ,n.

Proof. The proof is by induction on n. Suppose n=1and K1 = N = L1Lo--- Ly,
and Jy,Ja, -, Jn, [1, 12, -+, I, are prime ideals of R such that K; = J;M and
L, = I,M. So we have JM = I1Iy---1,, M, since M is cancelative R-module
J=1LlIy---1I,. So after reindexing J = Iy, thus K1 = L;. If n > 1, choose one
of the K;, say K7, such that K; does not properly contain K;, for i =2,3,--- ,n.
Since

11]2ImM:LngLm:KlKgKn:JljgJnMCKl
and M is cancelative, we have
Lily---1,=J0iJs---J, CJy

and J; is prime so by prime avoidenc Theorem there exists some I;, say Iy, is
contained in J;. Similarly since

Jidoy--Jy =1Ll 1, C1h

so J; C I;. Hence J; CI; C J; and so K; C L; C K;. By the minimality of K;
we must have K; = L, = K. Since Ky = L, is invertible, Proposition 2.1 implies
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that KoKs--- K, = LyLs---L,,. Therefore by the induction hypothesis n = m
and after reindexing K; = L; fori=1,2,--- ,n. O

Proposition 2.4. Let R be a ring and M be a finitely generated faithful multi-
plication R-module in which every proper submodule is a finite product of prime
submodules. Then every proper ideal of R is a finite product of prime ideals of R.

Proof. Let I be a proper ideal of R. Then I'M is a proper submodule of M, so
IM =K |Ky--- K, where K;, i =1,2,--- ,n is prime submodule of M, and there
exist prime ideals Py, Py, -+ , P, of R such that K; = P,M for eachi=1,2,--- ,n.
So we have

IM = K\ Ky K, = (PLM)(PyM) -+ (P,M) = PPy P,.

Since M is a finitely generated faithful multiplication R-module, M is a cancelative
module, hence we must have [ = PP, --- P,. O

Theorem 2.5. Let R be a ring and M be a finitely generated faithful multiplication
R-module in which every proper submodule is the product of a finite number of prime
submodules. Then every invertible prime submodule of M is mazimal.

Proof. Let N be an invertible prime submodule of M. So there exists prime ideal
P of R such that N = PM. Since N is invertible, P is an invertible ideal of R.
Hence, by [10, Theorem 6.5], P is a maximal ideal of R. Therefore N is maximal,
because M is cancelation R-module. a

Proposition 2.6. Fvery faithful multiplication module over an integral domain is
a D1 module.

Proof. See [11, Remark 3.8]. a

Theorem 2.7. Let R be an integral domain and M be a faithful multiplication R-
module in which every proper submodule is the product of a finite number of prime
submodules. Then every prime submodule of M is invertible.

Proof. Suppose N is a nonzero prime submodule of M and 0 # a € N. Then
Ra = K1 K5 - -+ K,, where P, is a prime submodule of M forall: =1,2,--- ,n. There
exist prime ideals P, Py, P, - , P, such that N = PM and for each 1 < i << n,
K; = P;M. Since

(P\Py---P,)M = (P,M)(P,M) - (P,M) =K1Ky --- K, = Ra C N = PM

and M is a cancelation R-module, P{ P, --- P, C P. Therefore for some k, P, C P
and hence Ky C N. Since by Proposition 2.6, Ra is invertible, K}, is invertible,by
Lemma 2.2. Hence K, is invertible prime submodule. So K}, is maximal by Theorem
2.5, whence N = Kj. Therefore N is maximal and invertible. O

Theorem 2.8. Let R be an integral domain and M be a faithful multiplication
R-module. Then M is Dedekind R-module if and only if every proper submodule of
M s a finite product of prime submodules of M.
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Proof. Let N be anonzero submodule of M. Choose maximal submodule Ky such
that N C Ky C M. If N = M, let Kj; = R. Now we have

KNy'NCKy'KyCM

therefore KR,lN is a submodule of M and contains N. If N is proper submodule
of M, then N C Kg,lN, because, if not

M =RM = RMRM = (N"'N)(Ky'Ky)

=N NKy)Ky=N"'NKy=MKy =Ky

is a contradiction. Let S be the set of all submodules of M and define a function
f:S—=Sby N— K;,lN. Given a proper submodule N, there exists a function
¢ : N — S such that ¢(0) = N and ¢(n+ 1) = f(¢(n)). If we denote ¢(n) by N,
and Ky, by K, then we have an ascending chain of submodules

N=NyCN; CNyC---

such that N,y = f(N,) = K,;'N,. Since M is Dedekind, M is Notherian R-
module and N is proper submodule of M, there is a least integer [ such that

N=NyC N C--CN_1CN =DNpyi.
Thus N; = Niyy = f(N) = Kl_lNl. So we must have N; = M. Consequently,
M =N = f(Ni-1) = K YNy

whence
N1 =N_1M=N_ K 'K_1=MEK_ =K_;.

Since K;—1 = N;—1 € Ny = M, K;_; is a maximal submodule of M. The minimality
of [ insures that each of Ky, -, K;_5 is also maximal, because, if not we have
K; = M, whence

Nijy1 =K 'N;=M"'N;=RN, = N;

is a contradiction. Now we have
_ | =1 g1 _ | —17-—1
Ki1=N_1=K_ N_s=K_K_ N _3=---=K 5 --K "K; N.
Consequently, since each K; is invertible,

(KoK K 9)K;_1 = (KoK - Kj_9)K, - K 'Ky 'N = N.

Conversely, by Lemma 2.2 and Theorem 2.7, M is a Dedekind R-module. O
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3. -modules

Definition 3.1. Let R be aring and M an R-module. Then M is called a Q-module
if every submodule of M is a finite product of primary submodules of M.

It is clear that a (Q-module is a Dedekind module.

Theorem 3.2. Let R be a ring and M a finitely generated faithful multiplication
R-module. If M is a Q-module, then

(1) Mg is a Q-module for multiplicative subset S of R.
(2) M/N is a Q-module for each submodule N of M.

Proof. (1) Let jy be a submodule of Mg. Then 3N M is a submodule of M. So
JN M = P;...P, where for each 1 < i < n, P; is a primary submodule of M. Hence
g=S"t()NM)=S"Y(P...P,) = (S71P)...(S71P,) which is a product of primary
submodules of Mg. Therefore Mg is a @-module.

(2) Let K/N be a submodule of M/N where K is a submodule of M. Then K =
Py...P, where for each 1 <4 < n, P; is a primary submodule of M. Hence K/N =
P,...P,/N = (P;/N)...(P,/N) which is a product of primary submodules of M/N.
Therefore M/N is a @-module. O

Remark 3.3. Let R be a ring, M a multiplication R-module, I an ideal of R and
N a submodule of M. Then (N :g M)M" = (N :g M)MM"™ ! = NM"~ ! =
NMM"2=..=NM=N and IM" = [(RM...RM) = IM.

Lemma 3.4. Let R be a ring, M a finitely generated multiplication R-module, I
an ideal of R and N a submodule of M. Then

(1) N is a product of primary submodules of M if and only if (N :g M) is a
product of primary ideals of R.

(2) I is a product of primary ideals of R if and only if IM is a product of primary
submodules of M.

Proof. (1) Let N = P;...P, where for each 1 < i < n, P; is a primary submodule
of M. Then (N :p M) = (P1...P, :g M) = (P1 :g M)...(P, :r M) where for each
1<i<n, (P :g M)is a primary ideal of R, by [3, Lemma 4]. Conversely, let
(N :g M) = Py...P, where for each 1 <i <mn, P; is a primary ideals of R. Hence,
by [3, Lemma 4], N = (N :g M)M" = (Py...P,)M™ = (P M)...(P,M) where for
each 1 <i <n, P;M is a primary submodule of M.

(2) let I = Py...P, where for each 1 < i < n, P; is a primary ideals of R. Hence,
by [3, Lemma 4], IM = IM™ = (P,...P,)M"™ = (PiM)...(P,M) where for each
1 <i<mn, P,M is a primary submodule of M. Conversely, let IM = P;...P,, where
for each 1 < i < n, P; is a primary submodule of M. Then I = (IM g M) =
(Py..P, :g M) = (Py :g M)...(P,, :r M) where for each 1 <i<n, (P,:g M)isa
primary ideal of R, by [3, Lemma 4]. o

Now we have the following Corollary.
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Corollary 3.5. Let R be a ring and M be a finitely generated multiplication R-
module. Then R is a Q-ring if and only if M is a Q-module.

Theorem 3.6. Let R be a ring and M be a finitely generated multiplication R-
module. If a submodule N of M is a finite product of primary submodules, then
there are only finitely many prime submodules of M which are minimal over N.

Proof. Let N be a product of primary submodules of M. Then, by Lemma 3.4,
(N :g M) is a product of primary ideals. Hence, by [6, Lemma 4], there are only
finitely many minimal prime submodules over (N :p M).

Therefore, by [3, Lemma 4], there are only finitely many prime submodules of
M which are minimal over N. O

Corollary 3.7. Let R be a ring and M be a finitely generated multiplication R-
module. If M is a Q-module, then there are only finitley many minimal prime
submodules over any submodule of M.

Lemma 3.8. Let R be a ring, M a multiplication R-module and N, K submodules
of M. If VN +vVK = M, then N + K = M. Moreover, NK = NN K.

Proof. Let VN+vK = M. Then (/(N :g M)++/(K :r M))M = /(N :p M)M+
V(K g M)M = M. So \/(N :g M)+ /(K :r M) = R. Hence (N :p M)+ (K :p
M) = R and thus (N :g M)(K :g M) = (N :g M)Nn (K :g M). Therefore
N+ K= (N:g M)M+ (K :g M)M = M. Moreover, KN = (N :g M)M(K :g
MM =(N:gM)MN(K:g M)M =NNK. O

Theorem 3.9. Let R be a ring and M a finitely generated faitful multiplication R-
module. Let M be a Noetherian module with dim(M) = 1. Then M is a Q-module.

Proof. Let N be a submodule of M. Then N has a minimal primary decomposition,
say, N = Q1 N Qs... N Q,, where for each 1 < i < n, @; is a P;-primary submodule
of M. Since dim(M) = 1, each nonzero prime submodule of M is maximal. So for
each 1 <i < n, P; is a maximal submodule of M. Hence, P; + P; = M for all ¢ # j.

Thus, by Lemma 3.8, Q; + @Q; = M for all i # j. Then N = Q1N Q2.. N Qp =
Q1Q3...Qy. Therefore M is a @-module. O

Note that if R is a ring, M is a multiplication R-module and N a submodule
of M, then N is a multiplication R-submodule of M if and only if (N :g M) is a
multiplication ideal of R. For this, let N be a multiplication R-submodule of M
and I an ideal of R such that I C (N :g M). Then IM C N. So IM = KN for
an ideal K of R. Hence I = (IM :g M) = K(N :g M). Therefore (N :g M) is a
multiplication ideal of R. Conversely, let (N :g M) be a multiplication ideal of R
and K asubmodule of N. Then (K :g M) C (N :g M). So(K :g M) =1(N :g M)
for an ideal I of R. Hence K = IN. Therefore N is a multiplication submodule of
M.

Proposition 3.10. Let R be a ring, M a multiplication R-module and N be a
multiplication submodule of M. If P is a prime submodule of M with P C N, then
P T, N
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Proof. Let N be a multiplication submodule of M. Then (N :g M) is a mul-
tiplication ideal of R. Let P be a prime submodule of M with P C N. Then
(P :gr M) is a prime ideal of R with (P :g M) C (N :g M). Hence, by [6],
(P:r M) C N2, (N :g M)". Therefore

P=(P:pg M)M™ C ()(N:zg M)"M" = (| N". O
n=1 n=1

It is shown that if R is a ring and M is a finitely generated faithful multiplication
R-module, then M is a Noetherian R-module if and only if R is a Noetherian ring.

Theorem 3.11. Let R be a ring and M a Noetherian finitely generated multiplica-
tion R-module. Then M is a Q-module if and only if every prime submodule which
is mot a mazimal submodule of M is a multiplication submodule.

Proof. 1t is obvious that M is a Noetherian module if and only if R is a Noetherian
ring. Then M is a @Q-module if and only if R is a @Q-ring by Theorem 3.5, if and
only if every prime ideal which is not maximal in R is multiplication by [6, Theorem
10], if and only if every prime submodule which is not a maximal submodule in M
is a multiplication submodule. O
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