KYUNGPOOK Math. J. 58(2018), 463-472
https://doi.org/10.5666/KMJ.2018.58.3.463
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Some Properties of Dedekind Modules and Q-modules

Shahram Motmaen, Ahmad Yousefian Darani* and Mahdi Rahmatinia
Department of Mathematics and Applications, Univeristy of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
e-mail: sh.motmaen@uma.ac.ir, yousefian@uma.ac.ir andm.rahmati@uma.ac.ir

Abstract. A Q-module is a module in which every nonzero submodule of M is a finite product of primary submodules of M. This paper is devoted to study some properties of Dedekind modules and Q-modules.

1. Introduction

Throughout this paper all rings are considered commutative rings with identiry and all modules are considered unitary. Let R be a ring and M an R module. A proper submodule N of M is a prime submodule if for each $r \in R$ and for each $m \in M$ with $r m \in N$, we have $m \in N$ or $r \in\left(N:_{R} M\right)$, where $\left(N:_{R} M\right)=\operatorname{Ann}(M / N)=\{r \in R \mid r M \subseteq N\}$. Also N is called a primary submodule of M if for each $r \in R$ and for each $m \in M$ with $r m \in N$, we have $m \in N$ or $r^{n} \in\left(N:_{R} M\right)$ for a positive integer n. We say that a submodule N of M is a radical submodule of M if $N=\sqrt{N}$, where $\sqrt{N}=\sqrt{\left(N:_{R} M\right)} M$.

The R-module M is said to be a multiplication R-module if every submodule N of M has the form $I M$ for some ideal I of R. If M be a multiplication R-module and N a submodule of M, then $N=I M$ for some ideal I of R. Hence $I \subseteq\left(N:_{R} M\right)$ and so $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. Therefore $N=\left(N:_{R} M\right) M$ [8]. Let M be a multiplication R-module, $N=I M$ and $L=J M$ be submodules of M for ideals I and J of R. Then, the product of N and L is denoted by $N . L$ or $N L$ and is defined by $I J M$ [5]. An R-module M is called a cancellation module if $I M=J M$ for two ideals I and J of R implies $I=J$ [1]. By [13, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancellation modules. It

[^0]follows that if M is a finitely generated faithful multiplication R-module, then $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$ for all ideals I of R and all submodules N of M. If R is an integral domain and M a faithful multiplication R-module, then M is a finitely generated R-module [9]. Let R be a ring, $Z(R)$ the set of zero-divisors of R and $S=R \backslash Z(R)$. Then $T(R)$ denotes the total quotient ring of R. A non-zero-divisor of a ring R is called a regular element and an ideal of R is said to be regular if it contains a regular element. For a non-zero ideal I of R, Let
$$
I^{-1}=\{x \in T(R): x I \subseteq R\}
$$

In this case $I I^{-1} \subseteq R$. I is called an invertible ideal of R if $I I^{-1}=R$. An integral domain R is called a Dedekind domain if every nonzero ideal of R is invertible.

Let M be an R-module. An element $r \in R$ is said to be a zero-divisor on M if $r m=0$ for some nonzero element $m \in M$. We denote by $Z(M)$ the set of all zero-divisors of M. It is easy to see that $Z(M)$ is not necessarily an ideal of R, but it has the property that if $a, b \in R$ with $a b \in Z(M)$, then either $a \in Z(M)$ or $b \in Z(M)$. Let M be an R-module and set

$$
T=\{t \in S: \text { for all } m \in M, t m=0 \text { implies } m=0\}=(R \backslash Z(M)) \cap(R \backslash Z(R)) .
$$

Then T is a multiplicatively closed subset of R with $T \subseteq S$, and if M is torsion-free then $T=S$. In particular, $T=S$ if M is a faithful multiplication R-module [9, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write $N^{-1}=\left(M:_{R_{T}}\right.$ $N)=\left\{x \in R_{T}: x N \subseteq M\right\}$. Then N^{-1} is an R-submodule of $R_{T}, R \subseteq N^{-1}$ and $N N^{-1} \subseteq M$. We say that N is invertible in M if $N N^{-1}=M$. Clearly $0 \neq M$ is invertible in M. An R-module M is called a Dedekind module if every nonzero submodule of M is invertible. In Section 2, we investigate some properties of Dedekind modules. It is proved that if M is a faithful multiplication R-module over an integral domain R, then M is Dedekind R-module if and only if every proper submodule of M is a finite product of prime submodules of M. In Section 3 we prove some results on Q-modules. Let R be a ring and M a finitely generated faitful multiplication R-module. We show that if M is a Noetherian module with $\operatorname{dim}(M)=1$, then M is a Q-module. Finally we prove that if M a Noetherian finitely generated multiplication module over R, then M is a Q-module if and only if every prime submodule which is not a maximal submodule of M is a multiplication submodule.

Here we list some preliminaries and results used throughout the paper.
Lemma 1.1([9]). Let M be multiplication module and let N be a submodule of M. Then $N=\operatorname{Ann}(M / N) M$

Lemma 1.2.([9, Theorem 2.5]) Let M be a nonzero multiplication R-module. Then,
(i) every proper submodule of M is contained in a maximal submodule of M;
(ii) K is a maximal submodule of M if and only if there exists a maximal ideal P of R such that $K=P M \neq M$.

Theorem 1.3.([9, Corollary 2.11]) Let R be ring and M an R-module. The following statements are equivalent for a proper submodule N of M :
(i) N is a prime submodule of M;
(ii) $\operatorname{Ann}(M / N)$ is a prime ideal of R;
(iii) $N=P M$ for some prime ideal P of R whit $\operatorname{Ann}(M) \subseteq P$.

Theorem 1.4.([9, Theorem 3.1]) Let R be a ring and M a faithful multiplication R-module. Then the following statements are equivalent:
(i) is finitely generated;
(ii) $A M \subseteq B M$ if and only if $A \subseteq B$;
(iii) for each submodule N of M, there exists a unique ideal I of R such that $N=I M ;$
(iv) $M \neq A M$ for any proper ideal A of R;
(v) $M \neq P M$ for any maximal ideal P of R.

Definition 1.5. Let R be a ring and M be an R-module and let N be a submodule of M such that $N=I M$ for same ideal I of R. Then, we say that I is a presentation ideal of N.
Theorem 1.6.([5, Theorem 3.4]) Let $N=I M$ and $K=J M$ be submodules of a multiplication R-module M. Then, the product of N and K is independent of presentations of N and K.

Definition 1.7. Let R be a ring, M an R-module and N a submodule of M. Then N is called decomposable if it has a primary decomposition $N=Q_{1} \cap \ldots \cap Q_{n}$ where for each $1 \leq i \leq n, Q_{i}$ is P_{i}-primary. Such a primary decomposition of N is said to be a minimal primary decomposition if
(1) P_{1}, \ldots, P_{n} are distinict prime ideal of R.
(2) $\bigcap_{i=1, i \neq j}^{n} \nsubseteq Q_{j}$ for all $j=1, \ldots, n$.

It is proved that every decomposable submodule of M has a minimal primary decomposition.

Theorem 1.8([12]). Let R be a ring and M a Noetherian R-module. Then every proper submodule of M is decomposable.

A commutative ring R is called a Q-ring if every ideal in R is a finite product of primary ideals in R. First, the class of Noetherian Q-rings have been studied and characterized by D. D. Anderson in [6]. Then Anderson and Mahaney in [7] have studied Q-rings in general.

2. Dedekind Modules

Proposition 2.1. Let R be a ring and M a multiplication R-module. If N, K, L are submodules of M such that $N K=N L$ and N is invertible, then $K=L$.
Proof. Let N, K, L are submodules of M such that $N K=N L$ and N is invertible. Then $K=M K=N^{-1} N K=N^{-1} N L=M L=L$.

Lemma 2.2. Let R be a ring, M a multiplication R-module and N_{1}, \cdots, N_{n} submodules of M. Then the submodule $N_{1} \cdots N_{n}$ is invertible if and only if for each $1 \leq i \leq n, N_{i}$ is invertible.
Proof. Let $I_{1}, I_{2}, \cdots, I_{n}$ be ideals of R such that $N_{1}=I_{1} M, N_{2}=I_{2} M, \cdots, N_{n}=$ $I_{n} M$. Suppose $N_{1} N_{2} \cdots N_{n}$ is invertible submodule. If K is a fractional ideal of R such that $K N_{1} N_{2} \cdots N_{n}=M$, then for each $i=1,2, \cdots, n$, we have,

$$
\begin{aligned}
& \left(K I_{1} I_{2} \cdots I_{i-1} I_{i+1} \cdots I_{n}\right) N_{i}=\left(K I_{1} I_{2} \cdots I_{i-1} I_{i+1} \cdots I_{n}\right) I_{i} M \\
& =\left(K I_{1} I_{2} \cdots I_{n}\right) M=K\left(I_{1} I_{2} \cdots I_{n}\right) M=K N_{1} N_{2} \cdots N_{n}=M
\end{aligned}
$$

So N_{i} is invertible. Conversely, suppose for each $1 \leq i \leq n, N_{i}$ is invertible. Then

$$
\left(N_{1}^{-1} N_{2}^{-1} \cdots N_{n}^{-1}\right)\left(N_{1} N_{2} \cdots N_{n}\right)=\left(N_{1}^{-1} N_{1}\right)\left(N_{2}^{-1} N_{2}\right) \cdots\left(N_{n}^{-1} N_{n}\right)=M
$$

So $N_{1} N_{2} \cdots N_{n}$ is invertible submodule of M.
Lemma 2.3. Let R be an integral domain and M a faithful multiplication R module. If $K_{1} K_{2} \cdots K_{n}=N=L_{1} L_{2} \cdots L_{m}$ where K_{i}, L_{i} are prime submodules of M and K_{i} is invertible then $n=m$ and $K_{i}=L_{i}$ for each $i=1,2, \cdots, n$.
Proof. The proof is by induction on n. Suppose $n=1$ and $K_{1}=N=L_{1} L_{2} \cdots L_{m}$ and $J_{1}, J_{2}, \cdots, J_{n}, I_{1}, I_{2}, \cdots, I_{m}$ are prime ideals of R such that $K_{j}=J_{j} M$ and $L_{i}=I_{i} M$. So we have $J M=I_{1} I_{2} \cdots I_{m} M$, since M is cancelative R-module $J=I_{1} I_{2} \cdots I_{m}$. So after reindexing $J=I_{1}$, thus $K_{1}=L_{1}$. If $n>1$, choose one of the K_{i}, say K_{1}, such that K_{1} does not properly contain K_{i}, for $i=2,3, \cdots, n$. Since

$$
I_{1} I_{2} \cdots I_{m} M=L_{1} L_{2} \cdots L_{m}=K_{1} K_{2} \cdots K_{n}=J_{1} J_{2} \cdots J_{n} M \subset K_{1}
$$

and M is cancelative, we have

$$
I_{1} I_{2} \cdots I_{m}=J_{1} J_{2} \cdots J_{n} \subset J_{1}
$$

and J_{1} is prime so by prime avoidenc Theorem there exists some I_{i}, say I_{1}, is contained in J_{1}. Similarly since

$$
J_{1} J_{2} \cdots J_{n}=I_{1} I_{2} \cdots I_{m} \subset I_{1}
$$

so $J_{i} \subseteq I_{1}$. Hence $J_{i} \subseteq I_{1} \subseteq J_{1}$ and so $K_{i} \subseteq L_{1} \subseteq K_{1}$. By the minimality of K_{1} we must have $K_{i}=L_{1}=K_{1}$. Since $K_{1}=L_{1}$ is invertible, Proposition 2.1 implies
that $K_{2} K_{3} \cdots K_{n}=L_{2} L_{3} \cdots L_{m}$. Therefore by the induction hypothesis $n=m$ and after reindexing $K_{i}=L_{i}$ for $i=1,2, \cdots, n$.

Proposition 2.4. Let R be a ring and M be a finitely generated faithful multiplication R-module in which every proper submodule is a finite product of prime submodules. Then every proper ideal of R is a finite product of prime ideals of R.
Proof. Let I be a proper ideal of R. Then $I M$ is a proper submodule of M, so $I M=K_{1} K_{2} \cdots K_{n}$ where $K_{i}, i=1,2, \cdots, n$ is prime submodule of M, and there exist prime ideals $P_{1}, P_{2}, \cdots, P_{n}$ of R such that $K_{i}=P_{i} M$ for each $i=1,2, \cdots, n$. So we have

$$
I M=K_{1} K_{2} \cdots K_{n}=\left(P_{1} M\right)\left(P_{2} M\right) \cdots\left(P_{n} M\right)=P_{1} P_{2} \cdots P_{n}
$$

Since M is a finitely generated faithful multiplication R-module, M is a cancelative module, hence we must have $I=P_{1} P_{2} \cdots P_{n}$.

Theorem 2.5. Let R be a ring and M be a finitely generated faithful multiplication R-module in which every proper submodule is the product of a finite number of prime submodules. Then every invertible prime submodule of M is maximal.
Proof. Let N be an invertible prime submodule of M. So there exists prime ideal P of R such that $N=P M$. Since N is invertible, P is an invertible ideal of R. Hence, by [10, Theorem 6.5], P is a maximal ideal of R. Therefore N is maximal, because M is cancelation R-module.

Proposition 2.6. Every faithful multiplication module over an integral domain is a D_{1} module.
Proof. See [11, Remark 3.8].
Theorem 2.7. Let R be an integral domain and M be a faithful multiplication R module in which every proper submodule is the product of a finite number of prime submodules. Then every prime submodule of M is invertible.
Proof. Suppose N is a nonzero prime submodule of M and $0 \neq a \in N$. Then $R a=K_{1} K_{2} \cdots K_{n}$ where P_{i} is a prime submodule of M for all $i=1,2, \cdots, n$. There exist prime ideals $P, P_{1}, P_{2}, \cdots, P_{n}$ such that $N=P M$ and for each $1 \leq i \leq \leq n$, $K_{i}=P_{i} M$. Since

$$
\left(P_{1} P_{2} \cdots P_{n}\right) M=\left(P_{1} M\right)\left(P_{2} M\right) \cdots\left(P_{n} M\right)=K_{1} K_{2} \cdots K_{n}=R a \subseteq N=P M
$$

and M is a cancelation R-module, $P_{1} P_{2} \cdots P_{n} \subseteq P$. Therefore for some $k, P_{k} \subseteq P$ and hence $K_{k} \subseteq N$. Since by Proposition $2.6, R a$ is invertible, K_{k} is invertible,by Lemma 2.2. Hence K_{k} is invertible prime submodule. So K_{k} is maximal by Theorem 2.5 , whence $N=K_{k}$. Therefore N is maximal and invertible.

Theorem 2.8. Let R be an integral domain and M be a faithful multiplication R-module. Then M is Dedekind R-module if and only if every proper submodule of M is a finite product of prime submodules of M.

Proof. Let N be anonzero submodule of M. Choose maximal submodule K_{N} such that $N \subseteq K_{N} \subsetneq M$. If $N=M$, let $K_{M}=R$. Now we have

$$
K_{N}^{-1} N \subseteq K_{N}^{-1} K_{N} \subseteq M
$$

therefore $K_{N}^{-1} N$ is a submodule of M and contains N. If N is proper submodule of M, then $N \subsetneq K_{N}^{-1} N$, because, if not

$$
\begin{gathered}
M=R M=R M R M=\left(N^{-1} N\right)\left(K_{N}^{-1} K_{N}\right) \\
=N^{-1}\left(N K_{N}^{-1}\right) K_{N}=N^{-1} N K_{N}=M K_{N}=K_{N}
\end{gathered}
$$

is a contradiction. Let S be the set of all submodules of M and define a function $f: S \rightarrow S$ by $N \mapsto K_{N}^{-1} N$. Given a proper submodule N, there exists a function $\phi: N \rightarrow S$ such that $\phi(0)=N$ and $\phi(n+1)=f(\phi(n))$. If we denote $\phi(n)$ by N_{n} and $K_{N_{n}}$ by K_{n}, then we have an ascending chain of submodules

$$
N=N_{0} \subset N_{1} \subset N_{2} \subset \cdots
$$

such that $N_{n+1}=f\left(N_{n}\right)=K_{n}^{-1} N_{n}$. Since M is Dedekind, M is Notherian R module and N is proper submodule of M, there is a least integer l such that

$$
N=N_{0} \subsetneq N_{1} \subsetneq \cdots \subsetneq N_{l-1} \subsetneq N_{l}=N_{l+1} .
$$

Thus $N_{l}=N_{l+1}=f\left(N_{l}\right)=K_{l}^{-1} N_{l}$. So we must have $N_{l}=M$. Consequently,

$$
M=N_{l}=f\left(N_{l-1}\right)=K_{l-1}^{-1} N_{l-1}
$$

whence

$$
N_{l-1}=N_{l-1} M=N_{l-1} K_{l-1}^{-1} K_{l-1}=M K_{l-1}=K_{l-1} .
$$

Since $K_{l-1}=N_{l-1} \subsetneq N_{l}=M, K_{l-1}$ is a maximal submodule of M. The minimality of l insures that each of K_{0}, \cdots, K_{l-2} is also maximal, because, if not we have $K_{i}=M$, whence

$$
N_{i+1}=K_{i}^{-1} N_{i}=M^{-1} N_{i}=R N_{i}=N_{i}
$$

is a contradiction. Now we have

$$
K_{l-1}=N_{l-1}=K_{l-2}^{-1} N_{l-2}=K_{l-2}^{-1} K_{l-3}^{-1} N_{l-3}=\cdots=K_{l-2}^{-1} \cdots K_{1}^{-1} K_{0}^{-1} N .
$$

Consequently, since each K_{i} is invertible,

$$
\left(K_{0} K_{1} \cdots K_{l-2}\right) K_{l-1}=\left(K_{0} K_{1} \cdots K_{l-2}\right) K_{l-2}^{-1} \cdots K_{1}^{-1} K_{0}^{-1} N=N .
$$

Conversely, by Lemma 2.2 and Theorem 2.7, M is a Dedekind R-module.

3. Q-modules

Definition 3.1. Let R be a ring and M an R-module. Then M is called a Q-module if every submodule of M is a finite product of primary submodules of M.

It is clear that a Q-module is a Dedekind module.
Theorem 3.2. Let R be a ring and M a finitely generated faithful multiplication R-module. If M is a Q-module, then
(1) M_{S} is a Q-module for multiplicative subset S of R.
(2) M / N is a Q-module for each submodule N of M.

Proof. (1) Let \jmath be a submodule of M_{S}. Then $\jmath \cap M$ is a submodule of M. So $\jmath \cap M=P_{1} \ldots P_{n}$ where for each $1 \leq i \leq n, P_{i}$ is a primary submodule of M. Hence $\jmath=S^{-1}(\jmath \cap M)=S^{-1}\left(P_{1} \ldots P_{n}\right)=\left(S^{-1} P_{1}\right) \ldots\left(S^{-1} P_{n}\right)$ which is a product of primary submodules of M_{S}. Therefore M_{S} is a Q-module.
(2) Let K / N be a submodule of M / N where K is a submodule of M. Then $K=$ $P_{1} \ldots P_{n}$ where for each $1 \leq i \leq n, P_{i}$ is a primary submodule of M. Hence $K / N=$ $P_{1} \ldots P_{n} / N=\left(P_{1} / N\right) \ldots\left(P_{n} / N\right)$ which is a product of primary submodules of M / N. Therefore M / N is a Q-module.

Remark 3.3. Let R be a ring, M a multiplication R-module, I an ideal of R and N a submodule of M. Then $\left(N:_{R} M\right) M^{n}=\left(N:_{R} M\right) M M^{n-1}=N M^{n-1}=$ $N M M^{n-2}=\ldots=N M=N$ and $I M^{n}=I(R M \ldots R M)=I M$.

Lemma 3.4. Let R be a ring, M a finitely generated multiplication R-module, I an ideal of R and N a submodule of M. Then
(1) N is a product of primary submodules of M if and only if $\left(N:_{R} M\right)$ is a product of primary ideals of R.
(2) I is a product of primary ideals of R if and only if IM is a product of primary submodules of M.
Proof. (1) Let $N=P_{1} \ldots P_{n}$ where for each $1 \leq i \leq n, P_{i}$ is a primary submodule of M. Then $\left(N:_{R} M\right)=\left(P_{1} \ldots P_{n}:_{R} M\right)=\left(P_{1}:_{R} M\right) \ldots\left(P_{n}:_{R} M\right)$ where for each $1 \leq i \leq n,\left(P_{i}:_{R} M\right)$ is a primary ideal of R, by [3, Lemma 4]. Conversely, let $\left(N:_{R} M\right)=P_{1} \ldots P_{n}$ where for each $1 \leq i \leq n, P_{i}$ is a primary ideals of R. Hence, by [3, Lemma 4], $N=\left(N:_{R} M\right) M^{n}=\left(P_{1} \ldots P_{n}\right) M^{n}=\left(P_{1} M\right) \ldots\left(P_{n} M\right)$ where for each $1 \leq i \leq n, P_{i} M$ is a primary submodule of M.
(2) let $I=P_{1} \ldots P_{n}$ where for each $1 \leq i \leq n, P_{i}$ is a primary ideals of R. Hence, by [3, Lemma 4], $I M=I M^{n}=\left(P_{1} \ldots P_{n}\right) M^{n}=\left(P_{1} M\right) \ldots\left(P_{n} M\right)$ where for each $1 \leq i \leq n, P_{i} M$ is a primary submodule of M. Conversely, let $I M=P_{1} \ldots P_{n}$ where for each $1 \leq i \leq n, P_{i}$ is a primary submodule of M. Then $I=\left(I M:_{R} M\right)=$ $\left(P_{1} \ldots P_{n}:_{R} M\right)=\left(P_{1}:_{R} M\right) \ldots\left(P_{n}:_{R} M\right)$ where for each $1 \leq i \leq n,\left(P_{i}:_{R} M\right)$ is a primary ideal of R, by [3, Lemma 4].

Now we have the following Corollary.

Corollary 3.5. Let R be a ring and M be a finitely generated multiplication R module. Then R is a Q-ring if and only if M is a Q-module.

Theorem 3.6. Let R be a ring and M be a finitely generated multiplication R module. If a submodule N of M is a finite product of primary submodules, then there are only finitely many prime submodules of M which are minimal over N.
Proof. Let N be a product of primary submodules of M. Then, by Lemma 3.4, ($N:_{R} M$) is a product of primary ideals. Hence, by [6, Lemma 4], there are only finitely many minimal prime submodules over $\left(N:_{R} M\right)$.

Therefore, by [3, Lemma 4], there are only finitely many prime submodules of M which are minimal over N.

Corollary 3.7. Let R be a ring and M be a finitely generated multiplication R module. If M is a Q-module, then there are only finitley many minimal prime submodules over any submodule of M.
Lemma 3.8. Let R be a ring, M a multiplication R-module and N, K submodules of M. If $\sqrt{N}+\sqrt{K}=M$, then $N+K=M$. Moreover, $N K=N \cap K$.
Proof. Let $\sqrt{N}+\sqrt{K}=M$. Then $\left(\sqrt{\left(N:_{R} M\right)}+\sqrt{\left(K:_{R} M\right)}\right) M=\sqrt{\left(N:_{R} M\right)} M+$ $\sqrt{\left(K:_{R} M\right)} M=M$. So $\sqrt{\left(N:_{R} M\right)}+\sqrt{\left(K:_{R} M\right)}=R$. Hence $\left(N:_{R} M\right)+\left(K:_{R}\right.$ $M)=R$ and thus $\left(N:_{R} M\right)\left(K:_{R} M\right)=\left(N:_{R} M\right) \cap\left(K:_{R} M\right)$. Therefore $N+K=\left(N:_{R} M\right) M+\left(K:_{R} M\right) M=M$. Moreover, $K N=\left(N:_{R} M\right) M\left(K:_{R}\right.$ $M) M=\left(N:_{R} M\right) M \cap\left(K:_{R} M\right) M=N \cap K$.

Theorem 3.9. Let R be a ring and M a finitely generated faitful multiplication R module. Let M be a Noetherian module with $\operatorname{dim}(M)=1$. Then M is a Q-module.
Proof. Let N be a submodule of M. Then N has a minimal primary decomposition, say, $N=Q_{1} \cap Q_{2} \ldots \cap Q_{n}$ where for each $1 \leq i \leq n, Q_{i}$ is a P_{i}-primary submodule of M. Since $\operatorname{dim}(M)=1$, each nonzero prime submodule of M is maximal. So for each $1 \leq i \leq n, P_{i}$ is a maximal submodule of M. Hence, $P_{i}+P_{j}=M$ for all $i \neq j$.

Thus, by Lemma 3.8, $Q_{i}+Q_{j}=M$ for all $i \neq j$. Then $N=Q_{1} \cap Q_{2} \ldots \cap Q_{n}=$ $Q_{1} Q_{2} \ldots Q_{n}$. Therefore M is a Q-module.

Note that if R is a ring, M is a multiplication R-module and N a submodule of M, then N is a multiplication R-submodule of M if and only if $\left(N:_{R} M\right)$ is a multiplication ideal of R. For this, let N be a multiplication R-submodule of M and I an ideal of R such that $I \subseteq\left(N:_{R} M\right)$. Then $I M \subseteq N$. So $I M=K N$ for an ideal K of R. Hence $I=\left(I M:_{R} M\right)=K\left(N:_{R} M\right)$. Therefore $\left(N:_{R} M\right)$ is a multiplication ideal of R. Conversely, let $\left(N:_{R} M\right)$ be a multiplication ideal of R and K a submodule of N. Then $\left(K:_{R} M\right) \subseteq\left(N:_{R} M\right)$. So $\left(K:_{R} M\right)=I\left(N:_{R} M\right)$ for an ideal I of R. Hence $K=I N$. Therefore N is a multiplication submodule of M.

Proposition 3.10. Let R be a ring, M a multiplication R-module and N be a multiplication submodule of M. If P is a prime submodule of M with $P \subsetneq N$, then $P \subseteq \bigcap_{n=1}^{\infty} N^{n}$.

Proof. Let N be a multiplication submodule of M. Then $\left(N:_{R} M\right)$ is a multiplication ideal of R. Let P be a prime submodule of M with $P \subsetneq N$. Then $\left(P:_{R} M\right)$ is a prime ideal of R with $\left(P:_{R} M\right) \subsetneq\left(N:_{R} M\right)$. Hence, by [6], $\left(P:_{R} M\right) \subseteq \bigcap_{n=1}^{\infty}\left(N:_{R} M\right)^{n}$. Therefore

$$
P=\left(P:_{R} M\right) M^{n} \subseteq \bigcap_{n=1}^{\infty}\left(N:_{R} M\right)^{n} M^{n}=\bigcap_{n=1}^{\infty} N^{n}
$$

It is shown that if R is a ring and M is a finitely generated faithful multiplication R-module, then M is a Noetherian R-module if and only if R is a Noetherian ring.

Theorem 3.11. Let R be a ring and M a Noetherian finitely generated multiplication R-module. Then M is a Q-module if and only if every prime submodule which is not a maximal submodule of M is a multiplication submodule.
Proof. It is obvious that M is a Noetherian module if and only if R is a Noetherian ring. Then M is a Q-module if and only if R is a Q-ring by Theorem 3.5, if and only if every prime ideal which is not maximal in R is multiplication by [6, Theorem 10], if and only if every prime submodule which is not a maximal submodule in M is a multiplication submodule.

References

[1] M. M. Ali, Some remarks on generalized GCD domains, Comm. Algebra, 36(2008), 142-164.
[2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36(2008), 4620-4642.
[3] M. M. Ali, Invertibility of multiplication modules II, New Zealand J. Math., 39(2009), 45-64.
[4] M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math., 39 (2009), 193-213.
[5] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci., 27(2003), 1715-1724.
[6] D. D. Anderson, Noetherian rings in which every ideal is a product of primary ideals, Canad. Math. Bull., 23(1980), 457-459.
[7] D. D. Anderson and L. A. Mahaney, Commutative rings in which every ideal is a product of primary ideals, J. Algebra, 106(1987), 528-535.
[8] A. Barnard, Multiplication modules, J. Algebra, 71(1981), 174-178.
[9] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(1998), 755-799.
[10] T. W. Hungerford, Algebra, Springer-Verlag (1974).
[11] A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(2)(1996), 397-412.
[12] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, (1990).
[13] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 223235.

[^0]: * Corresponding Author.

 Received March 23, 2016; revised August 26, 2016; accepted February 4, 2017.
 2010 Mathematics Subject Classification: 13B22, 13C10, 13C13.
 Key words and phrases: Dedekind module, multiplication module, invertible submodule, Q-module.

