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Abstract. In this paper, we study the toroidality of the comaximal graphs of a finite

lattice.

1. Introduction

The concept of the comaximal graph of a commutative ring R was first defined
in [9]. In [9], Sharma and Bhatwadekar defined the comaximal graph of R, de-
noted by Γ(R), with all elements of R being the vertices, and two distinct vertices
a and b are adjacent if and only if Ra + Rb = R. In [5] and [10], the authors
considered a subgraph Γ2(R) of Γ(R) consisting of non-unit elements of R, and
studied several properties of the comaximal graph. Also the comaximal graph of a
non-commutative ring was defined and studied in [11]. Recently, in [1], the comax-
imal graph of a lattice was defined and studied. The comaximal graph of a lattice
L = (L,∧,∨), denoted by Γ(L), is an undirected graph with all elements of L being
the vertices, and two distinct vertices a and b are adjacent if and only if a ∨ b = 1.

First we recall some definitions and notation on lattices and graphs.
Recall that a lattice is an algebra L = (L,∧,∨) satisfying the following condi-

tions: for all a, b, c ∈ L,

1. a ∧ a = a, a ∨ a = a,

2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,

3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

Note that in every lattice the equality a ∧ b = a always implies that a ∨ b = b.
Also, by [7, Theorem 2.1], one can define an order 6 on L as follows: For any
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a, b ∈ L, we set a 6 b if and only if a ∧ b = a. Then (L,6) is an ordered set in
which every pair of elements has a greatest lower bound (g.l.b.) and a least upper
bound (l.u.b.). Conversely, let L be an ordered set such that, for every pair a, b ∈ L,
g.l.b.(a, b), l.u.b.(a, b) ∈ L. For each a and b in L, we define a ∧ b := g.l.b.(a, b) and
a ∨ b := l.u.b.(a, b). Then (L,∧,∨) is a lattice. A lattice L is said to be bounded if
there are elements 0 and 1 in L such that 0 ∧ a = 0 and a ∨ 1 = 1, for all a ∈ L.
Note that every finite lattice is bounded. Recall that for two elements a and b in a
partially ordered set (P,6), we say that a covers b or b is covered by a, in notation
b ≺ a, if and only if b < a and there is no element p in P such that b < p < a. An
element a in L is called a co-atom if a ≺ 1. We denote the sets of all co-atoms in a
lattice L by C(L). Also, for an element a ∈ L, we set [a]l = {b ∈ L | b ≤ a}.

For a positive integer r, an r-partite graph is one whose vertex set can be
partitioned into r subsets so that no edge has both ends in any one subset. A
complete r-partite graph is one in which each vertex is joined to every vertex that
is not in the same subset. The complete bipartite graph (2-partite graph) with
part sizes m and n is denoted by Km,n. An elementary contraction consists of the
deletion of a vertex or an edge or the identification of two adjacent vertices. A
graph G is said to contract to a graph H if there exists a sequence of elementary
contractions which transforms G into H. A subdivision of a graph is any graph that
can be obtained from the original graph by replacing edges with paths. A graph is
said to be planar if it can be drawn in the plane so that its edges intersect only at
their ends. A remarkable simple characterization of the planar graphs was given by
Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and only
if it contains no subdivision of K5 or K3,3 (cf. [2, p.153]).

By a surface, we mean a connected compact 2-dimensional real manifold with-
out boundary, that is a connected topological space such that each point has a
neighbourhood homeomorphic to an open disc. The sphere is designated to be the
surface S0; the surface formed by adding g handles to the sphere is denoted Sg.
It is well-known that every compact surface is homeomorphic to a sphere, or to a
connected sum of g tori (Sg), or to a connected sum of k projective planes (Nk)
(see [6, Theorem 5.1]). This number g is called the genus of the surface. The torus
can be thought of as 1 tori (S1) or as a sphere with 1 handle.

A //

B

��������

B

//
A

The canonical representation of a torus

A graph G is embeddable in a surface S if the vertices of G are assigned to
distinct points in S such that every edge of G is a simple arc in S connecting the
two vertices which are joined in G. If G can not be embedded in S, then G has
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at least two edges intersecting at a point which is not a vertex of G. We say a
graph G is irreducible for a surface S if G does not embed in S, but any proper
subgraph of G embeds in S. The least non-negative integer g that the graph G can
be embedded in Sg is called the genus of G. A toroidal graph is a graph that can
be embedded without crossings on the torus. Hence, toroidal graphs have genus 1.
Note that a planar graph is a graph that can be embedded on S0. And so a planar
graph is not toroidal. Also a complete graph Kn is toroidal if n = 5, 6 or 7, and the
only toroidal complete bipartite graphs are K4,4, K3,3, K3,4, K3,5 and K3,6 (see [3]
or [8]).

2. Toroidal comaximal graph of a lattice

In this paper, we assume that L is a finite lattice. The comaximal graph of a
lattice L, denoted by Γ(L), is an undirected graph with all elements of L being the
vertices, and two distinct vertices a and b are adjacent if and only if a ∨ b = 1. We
denote the induced subgraph of Γ(L) with vertex set L \ (J(L) ∪ {1}), by Γ2(L),
where J(L) is the set

⋂
m∈C(L)[m]l (see [1]). Consider the l.u.b. of two vertices in

J(L) to see that they can not be connected. Therefore, the vertices in J(L) are
isolated vertices.

In this section, we explore the toroidality of the graph Γ2(L).
By [1, Lemma 4.1.], if Γ2(L) is planar, then |C(L)| ≤ 4. If |C(L)| = 1, then

Γ2(L) is an empty graph. Note that when |C(L)| = 2, we observe that Γ2(L) is a
complete bipartite graph (see [1, Corollary 3.5.]). So Γ2(L) is planar if and only if
either |[m1]l\[m2]l| ≤ 2 or |[m2]l\[m1]l| ≤ 2, where C(L) = {m1,m2}. Also one can
easily see that Γ2(L) is toroidal if and only if either |[m1]l\[m2]l| = |[m2]l\[m1]l| = 4
or |[m1]l\ [m2]l| = 3, |[m2]l\ [m1]l| ∈ {3, 4, 5, 6}, where C(L) = {m1,m2}. We begin
this section with the following lemma.

Lemma 2.1. If Γ2(L) is toroidal, then the size of C(L) is at most 7.

Proof. Assume to the contrary that |C(L)| ≥ 8. Then the induced subgraph of
Γ2(L) with vertex set C(L) is isomorphic to K8, which is a contradiction. 2

By Lemma 2.1., it is sufficient for us to probe the toroidality of the graph Γ2(L)
in the cases in which the size of C(L) is 3, 4, 5, 6 or 7. In this paper, we discuss on
the case that |C(L)| = 3. First we begin with the following notation.

Notation 2.2. Let |C(L)| = n, where n > 1. To simplify notation, we denote the
maximal ideal [m]l, where m ∈ C(L), by m. We set St := mt\

⋃
i 6∈{t}mi, where

1 ≤ i, t ≤ n. Also St1t2...tk := (mt1 ∩ mt2 ∩ · · · ∩ mtk) \
⋃

i 6∈{t1,t2,...,tk}mi, where
1 ≤ t1, t2, . . . , tk ≤ n.

Note that each element in Si is adjacent to each element in Sj , for 1 ≤ i 6= j ≤ n,
and also it is adjacent to each element in St1t2...tk , where t1, . . . , tk 6∈ {i}.

Remark 2.3. In [1, Theorem 4.3.], Afkhami and Khashyarmanesh completely
determined those lattices with 3 co-atoms whose graph Γ2(L) is planar.



436 K. A. Javaheri and A. Parsapour

Lemma 2.4. Assume that |
⋃3

t=1 St| ≥ 10. Then Γ2(L) is not a toroidal graph.

Proof. Set n:= |
⋃3

t=1 St|. Then we have the following cases:
Case 1. |Si| 6= n − 2, for i = 1, 2, 3. Since the contraction of Γ2(L) contains a
subgraph isomorphic to K3,7 or K4,5, one can conclude that the graph Γ2(L) is not
toroidal.
Case 2. There exists 1 ≤ i ≤ 3, such that |Si| = n− 2. If Sjk is an empty set, for
j, k /∈ {i} with 1 ≤ i, j, k ≤ 3, then Γ2(L) is planar, which is not a toroidal graph.
If Sjk 6= ∅, for j, k /∈ {i} with 1 ≤ i, j, k ≤ 3, then we can find a copy of K3,8 in the
contraction of Γ2(L), and thus the graph Γ2(L) is not toroidal. 2

Now, by Lemma 2.4., we state necessary and sufficient conditions for toroidality
of the graph Γ2(L), when |C(L)| = 3. It should be noted that in the proof of
following theorem, according to Remark 2.3., the cases where the graph Γ2(L) is
planar is ignored.

Theorem 2.5. Suppose that |C(L)| = 3. Then Γ2(L) is a toroidal graph if and
only if one of the following conditions holds:

(i) |
⋃3

t=1 St| = 5 and one of the following conditions is satisfied:

(a) There is some Si with |Si| = 3, for 1 ≤ i ≤ 3 and |Si1i2 | ∈ {1, 2, 3, 4},
for i1, i2 6∈ {i}.

(b) There is a unique Si with |Si| = 1, for 1 ≤ i ≤ 3, and Sii1 6= ∅, for
i1 6∈ {i}.

(ii) |
⋃3

t=1 St| = 6 and one of the following conditions is satisfied:

(a) There exists some i with 1 ≤ i ≤ 3 such that |Si| = 4, and |Si1i2 | ∈
{1, 2}, for i1, i2 6∈ {i}.

(b) There exist unique i and j with 1 ≤ i, j ≤ 3 such that |Si| = 3 and
|Sj | = 2, also if |Sji1 | = 2, then |Sii1 | ≥ 0, and if |Sji1 | = 3, then
Sii1 = ∅, for i1 6∈ {i, j}.

(c) |Si| = 2, for all i with 1 ≤ i ≤ 3, and Si1i2 6= ∅, for 1 ≤ i1, i2 ≤ 3.

(iii) |
⋃3

t=1 St| = 7 and one of the following conditions is satisfied:

(a) There is some i with 1 ≤ i ≤ 3 such that |Si| = 5, and |Si1i2 | = 1, for
i1, i2 6∈ {i}.

(b) There is some i with 1 ≤ i ≤ 3 such that |Si| = 4, and |Si1i2 | = 1, for
i1, i2 6∈ {i}.

(c) |Si| = |Sj | = 3 for some i and j with 1 ≤ i, j ≤ 3, and |Sii1 | = |Sji1 | = 1,
for i1 6∈ {i, j}. Also if |Si1i2 | = 2, for some i1 ∈ {i, j}, i2 6∈ {i, j}, then
Si2i3 = ∅, for i3 ∈ {i, j} \ {i1}.

(d) There is a unique i with 1 ≤ i ≤ 3 such that |Si| = 3, also |Si1i2 | = 1,
and if |Si1i2 | = 2, then Sii1 , Sii2 are empty sets, for i1, i2 6∈ {i}.



On the Toroidal Comaximal Graph of Lattices 437

(iv) |
⋃3

t=1 St| = 8 and one of the following conditions is satisfied:

(a) There exists some i with 1 ≤ i ≤ 3 such that |Si| = 6, and |Si1i2 | = 1,
for i1, i2 6∈ {i}.

(b) There exists some i with 1 ≤ i ≤ 3 such that |Si| = 5, and Si1i2 = ∅,
for i1, i2 6∈ {i}.

(c) There exist unique i and j with 1 ≤ i, j ≤ 3 such that |Si| = 4 and
|Sj | = 3 and Sii1 = Sji1 = ∅, for i1 6∈ {i, j}.

(d) |Si| = |Sj | = 3 for some i and j with 1 ≤ i, j ≤ 3, and if Si1i2 = ∅, for
all i1 ∈ {i, j}, i2 6∈ {i, j}, then |Sij | ≥ 0, also if |Si1i2 | = 1, for some
i1 ∈ {i, j}, i2 6∈ {i, j}, then Sij = ∅.

(e) |Si| = |Sj | = 2 for some i and j with 1 ≤ i, j ≤ 3, and Sij = ∅.

(v) |
⋃3

t=1 St| = 9 and one of the following conditions is satisfied:

(a) There is some i with 1 ≤ i ≤ 3 such that |Si| = 6, and Si1i2 = ∅, for
i1, i2 6∈ {i}.

(b) |Si| = 3 for all i with 1 ≤ i ≤ 3, and Si1i2 = ∅, for i1, i2 ∈ {1, 2, 3}.

Proof. If one of the above statements holds, then one can easily check that Γ2(L)
is a toroidal graph.

Conversely, let Γ2(L) be toroidal. By Lemma 2.4., 5 ≤ |
⋃3

t=1 St| ≤ 9. Thus we
have the following situations:

(i) |
⋃3

t=1 St| = 5.
Assume that there is some i, say i = 1, such that |Si| = 3. If S23 is non-empty,

then the contraction of Γ2(L) contains a subgraph isomorphic to K3,3, and so it is
not planar. Also when |S23| ≥ 5, we have a copy of K3,7 in the contraction of Γ2(L)
with vertex set {a1, a2, a3} ∪ {b, c, s1, s2, . . . , s5}, where a1, a2, a3 ∈ S1, b ∈ S2,
c ∈ S3 and s1, s2, . . . , s5 ∈ S23. It is clear that the graph Γ2(L) is not toroidal.
Therefore, we may assume that 1 ≤ |S23| ≤ 4. In this situation, the complement
of Γ2(L) contains C603, one of the listed graphs in [4], which is pictured in Figure
1. In Figure 1, we replace x1, x2, . . . , x9 by a1, a2, a3, b, s1, s2, s3, s4, c, respectively,
which a1, a2, a3 ∈ S1, b ∈ S2, c ∈ S3 and s1, s2, s3, s4 ∈ S23. Therefore, Γ2(L) is a
toroidal graph (see Figure 2).

Now, if there is a unique i, say i = 1, such that |Si| = 1, and the sets S12

and S13 are non-empty, then we can find a subdivision of K5 in the structure of
the contraction of Γ2(L) as it is shown in Figure 3, where a ∈ S1, b1, b2 ∈ S2,
c1, c2 ∈ S3, s12 ∈ S12 and s13 ∈ S13. Thus Γ2(L) is toroidal.

(ii) |
⋃3

t=1 St| = 6.
Suppose that there exists only one i, say i = 1, such that |Si| = 4. If the size of

S23 is at least 3, then one can easily observe that the contraction of Γ2(L) contains
a subgraph isomorphic to K4,5. Hence the graph Γ2(L) is not toroidal. So, for
toroidality, the size of S23 is necessarily 1 or 2. In this case, Γ2(L) is contained in
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Figure 1: C603
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K8 \ (K3 ∪K2) (cf. [4, p.55]). Hence Γ2(L) is a toroidal graph (see Figure 4). In
Figure 4, we assume that a1, a2, a3, a4 ∈ S1, b ∈ S2, c ∈ S3 and s23, s

′
23 ∈ S23.

Now, assume that there exists a unique i, say i = 1, such that |Si| = 3. If S23

has at least 4 elements, then the contraction of Γ2(L) contains a copy of K3,7, and
hence Γ2(L) is not a toroidal graph. Also if |S23| = 3 and S13 is non-empty, then
the complement of the contraction of Γ2(L) is contained in U6.6b, one of the listed
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s23

s23

s′23

s′23

b b

c c

a2

a3
a4

a1

Figure 4:

graphs in [4]. So the graph Γ2(L) is not toroidal (see Figure 5). In Figure 5, we have
the vertices a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c ∈ S3, s13 ∈ S13 and s23, s

′
23, s

′′
23 ∈ S23.

b1

s′23s23

b2, s13c

s′′23

a1 a2
a3

Figure 5: U6.6b

Therefore, for toroidality of Γ2(L), when |S23| = 3, necessarily, S13 = ∅. In this
situation, the complement of Γ2(L) contains C610, one of the listed graphs in [4]
(see Figure 6). In Figure 6, we have the vertices a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c ∈ S3

and s23, s
′
23, s

′′
23 ∈ S23. In this situation, the embedding of the graph Γ2(L) in the

torus is pictured in Figure 7.
In addition, if |S23| ≤ 2, then the contraction of Γ2(L) contains a copy of K3,3,

and so Γ2(L) is not planar. In this situation, Γ2(L) is contained in K8 \ (K3 ∪K2),
(cf. [4, p.55]). Therefore, Γ2(L) is a toroidal graph (see Figure 8). In Figure 8, we
have the vertices a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c ∈ S3, s13 ∈ S13 and s23, s

′
23 ∈ S23.

Finally, suppose that |Si| = 2, for all 1 ≤ i ≤ 3 and only one of the sets S12, S13

or S23 is non-empty. Then it is easy to check that the contraction of Γ2(L) contains
K3,3 and so it is not planar. Now we assume that at least one of the sets S12, S13 or
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Figure 8:

S23 are non-empty sets. Obviously, we can find a subdivision of K6 in Γ2(L) as it
is shown in Figure 9, where a1, a2 ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3, s12 ∈ S12, s13 ∈ S13
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and s23 ∈ S23. Thus Γ2(L) is a toroidal graph.

a1

a1

a2

a2

b1 b1

b2 b2

c1
c2

s12
s13

s23

s13

s23

Figure 9:

(iii) |
⋃3

t=1 St| = 7.
First, suppose that |Si| = 5, for some 1 ≤ i ≤ 3, without loss of generality, we

may assume that i = 1. If S23 has exactly 1 element, then Γ2(L) is contained in
K8 \(K3∪K2), (cf. [4, p.55]). Hence the graph Γ2(L) is toroidal (see Figure 10). In
Figure 10, we have the vertices a1, a2, a3, a4, a5 ∈ S1, b ∈ S2, c ∈ S3 and s23 ∈ S23.

s23 s23

s23s23

b

b

c c
a2

a3
a4

a1

a5

Figure 10:

We may assume that S23 has at least 2 elements. In this case, the vertices of
the set {a1, a2, . . . , a5} ∪ {b, c, s23, s′23} form a subgraph isomorphic to K4,5 in the
contraction of Γ2(L), where a1, a2, . . . , a5 ∈ S1, b ∈ S2, c ∈ S3 and s23, s

′
23 ∈ S23.

Therefore, Γ2(L) is not a toroidal graph.
Suppose that there is i with 1 ≤ i ≤ 3, say 1, such that |Si| = 4. When S23

is a singleton set, the graph Γ2(L) is contained in K8 \ (K3 ∪ K2) (cf. [4, p.55]).
So the graph Γ2(L) is toroidal (see Figure 11). In Figure 11, we have the vertices
a1, a2, a3, a4 ∈ S1, b1, b2 ∈ S2, c ∈ S3 and s23 ∈ S23.

As |S23| ≥ 2, the contraction of Γ2(L) contains a copy of K4,5, which implies
that Γ2(L) is not a toroidal graph. If S1 and S2 have exactly 3 elements, and
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s23 s23

s23s23

b1

b1

b2

b2

c ca2

a3

a4

a1

Figure 11:

S13 or S23 has at least 3 elements, then we have a subgraph isomorphic to K3,7

in the contraction of Γ2(L), and so Γ2(L) is not a toroidal graph. Therefore, we
assume that |S13| ≤ 2, S23 = ∅ or |S23| ≤ 2, S13 = ∅. Then the complement of
Γ2(L) contains C603, one of the listed graphs in [4] (see Figure 1). In Figure 1, we
replace vertices x1, x2, . . . , x9 by b1, b2, b3, a1, s13, c, a2, a3, s

′
13, respectively, where

a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2, c ∈ S3 and s13, s
′
13 ∈ S13. Hence the graph Γ2(L) is

toroidal (see Figure 12).

a1

a1

s13

s13

a3 a3

s′13 s′13

a2

a2

b3

b1 b2

c c

c c

Figure 12:

In addition, we may assume S13 and S23 have 1 element, exactly. Then the
complement of Γ2(L) contains C402, one of the listed graphs in [4] (see Figure 13).
In Figure 13, we have the vertices a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2, c ∈ S3, s13 ∈ S13

and s23 ∈ S23. So Γ2(L) is a toroidal graph, which is pictured in Figure 14.
If one of the sets S13 or S23 has exactly 2 elements and the other one has only 1

element, then Γ2(L) contains a subgraph isomorphic to G3, one of the listed graphs
in [12]. So Γ2(L) is not a toroidal graph. To do this, in Figure 15, we have the
vertices a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2, c ∈ S3, s13, s

′
13 ∈ S13 and s23 ∈ S23.
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Figure 13: C402
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b1 b3

c

s′13s13

s23

Figure 15: G3

Now, consider the case that there is a unique i, say 1, such that |Si| = 3. If
S23 has at least 3 elements, then the contraction of Γ2(L) contains a copy of K3,7,
and so the graph Γ2(L) is not toroidal. When |S23| = 2, and also S12 or S13 is
non-empty, the complement of the contraction of Γ2(L) is contained in U6.6b, one
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of the listed graphs in [4] (see Figure 16). To do this, in Figure 16, we have the
vertices a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3, s23, s

′
23 ∈ S23 and s12 ∈ S12. So the

graph Γ2(L) is not toroidal.

c2

s′23s23

c1, s12b1

b2

a1 a2
a3

Figure 16: U6.6b

Hence we assume that |S23| = 2 and S12 = S13 = ∅. Then the complement
of Γ2(L) contains C603, one of the listed graphs in [4] (see Figure 1). In Figure 1,
we replace the vertices x1, x2, . . . , x9 by a1, a2, a3, b1, s23, c1, b2, s

′
23, c2, respectively,

where a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3 and s23, s
′
23 ∈ S23. Hence Γ2(L) is a

toroidal graph, which is pictured in Figure 17.
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s′23

s′23

b2 b2

s23 s23

c2

c2

a3

a1

a2

b1 b1

b1 b1

Figure 17:

When S23 is a singleton set, Γ2(L) is contained in K8 \(K3∪K2), (cf. [4, p.55]).
Thus the graph Γ2(L) is toroidal (see Figure 18). In Figure 18, we have the vertices
a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3, s12 ∈ S12, s13 ∈ S13 and s23 ∈ S23.

(iv) |
⋃3

t=1 St| = 8.
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c1

c1

s12

s12

b2 b2

s23 s23

c2

c2

s13 s13

a3

a1
a2

b1 b1

b1 b1

Figure 18:

Suppose that there exists only one i, say i = 1, such that |Si| = 6. If the size
of S23 is at least 2, then one can easily see that the contraction of Γ2(L) contains a
subgraph isomorphic to K4,6. Hence Γ2(L) is not a toroidal graph. So the size of S23

is necessarily 1. In this situation, the complement of Γ2(L) contains C603, one of
the listed graphs in [4] (see Figure 1). To do this, in Figure 1, we replace the vertices
x1, x2, . . . , x9 by b, s23, c, a1, a3, a5, a2, a4, a6, respectively, where a1, a2, . . . , a6 ∈ S1,
b ∈ S2, c ∈ S3 and s23 ∈ S23. Thus Γ2(L), which is pictured in Figure 19, is a
toroidal graph.

a2

a2

a3

a3

a5 a5

a6 a6

a4

a4

s23

b

c

a1 a1

a1 a1

Figure 19:

Now, suppose that there exists some i, say i = 1, such that |Si| = 5. If S23 is
non-empty, then the contraction of Γ2(L) contains a copy of K4,5, and so Γ2(L) is not
a toroidal graph. Otherwise, S23 = ∅, and so Γ2(L) is contained in K8 \ (K3 ∪K2),
(cf. [4, p.55]). Therefore, Γ2(L) is a toroidal graph (see Figure 20). In Figure 20,
we have the vertices a1, a2, . . . , a5 ∈ S1, b1, b2 ∈ S2 and c ∈ S3.

Suppose that there exist unique i and j with 1 ≤ i, j ≤ 3, say i = 1 and j = 2,
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a2

a2

a3

a3

b1 b1

b2 b2

a4

a4

c a5

a1 a1

a1 a1

Figure 20:

such that |Si| = 4, |Sj | = 3. If S13 is non-empty, then the complement of Γ2(L) is
contained in S5.5, one of the listed graphs in [4] (see Figure 21). In fact, in Figure
21, we have the vertices a1, a2, a3, a4 ∈ S1, b1, b2, b3 ∈ S2, c ∈ S3 and s13 ∈ S13.
And so the graph Γ2(L) is not toroidal.

s13

a4a1

a3a2

b1 b2
b3

c

Figure 21: S5.5

Also if S23 is non-empty, then one can easily see that the contraction of Γ2(L)
contains a copy of K4,5. Hence Γ2(L) is not toroidal. So the size of the sets S13 and
S23 is 0. In this case, Γ2(L) is contained in K8 \ (K3∪K2) (cf. [4, p.55]), which is a
toroidal graph (see Figure 22). In Figure 22, we have the vertices a1, a2, a3, a4 ∈ S1,
b1, b2, b3 ∈ S2 and c ∈ S3.

Suppose that S1 and S2 have exactly 3 elements. If |S13| ≥ 2 or |S23| ≥ 2,
then it is easy to see that the contraction of Γ2(L) contains a copy of K3,7. Hence
Γ2(L) is not a toroidal graph. Also, if S13 and S23 have only 1 element, then Γ2(L)
contains a subgraph isomorphic to G3, one of the listed graphs in [12]. So the graph
Γ2(L) not toroidal. To do this, in Figure 23, we have the vertices a1, a2, a3 ∈ S1,
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a1

a1

b1 b1

b2 b2

a2

a2

a4
a3

c c

c c

b3

Figure 22:

b1, b2, b3 ∈ S2, c1, c2 ∈ S3, s13 ∈ S13 and s23 ∈ S23.

a1
a2

a3

b2
b1 b3

s23

c2s13

c1

Figure 23: G3

So we may assume that S12 is non-empty and also S13 or S23 has only 1 element.
Then the complement of the contraction of Γ2(L) is contained in S5.6, one of the
listed graphs in [4] (see Figure 24). Hence the graph Γ2(L) is not toroidal. In Figure
24, we have the vertices a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2, c1, c2 ∈ S3, s12 ∈ S12 and
s13 ∈ S13.

Therefore if the size of the set S13 or S23 is 1, then necessarily S12 must be an
empty set. Since the complement of Γ2(L) contains C402, one of the listed graphs
in [4]. To do this, in Figure 25, we have the vertices a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2,
c1, c2 ∈ S3, s13 ∈ S13. Hence Γ2(L) is a toroidal graph (see Figure 26).

Consequently, two sets S13 and S23 are both empty. In this situation, Γ2(L) is
contained in K8 \ (K3 ∪K2) (cf. [4, p.55]), which is a toroidal graph. To do this,
in Figure 27, we have the vertices a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2, c1, c2 ∈ S3 and
s12 ∈ S12.

Now, suppose that S1 and S2 have 2 elements. If S12 is non-empty, then the
contraction of Γ2(L) contains a copy of K4,5, and thus the graph Γ2(L) is not
toroidal. So the set S12 is necessarily empty. In this case, Γ2(L) is contained in
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s13 c2, s12c1

b2b1

b3

a1 a2
a3

Figure 24: S5.6

a1

a2

a3

b1 b2

b3

c2

s13

c1

Figure 25: C402
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b1 b1

b2 b2
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c2c2
a3

b3

s13 s13

s13 s13

Figure 26:
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c1

c1

b2

b2

b3 b3

c2 c2
a3

a1

a2

b1 b1

b1 b1

s12

Figure 27:

K8 \ (K3 ∪K2), (cf. [4, p.55]), which is a toroidal graph (see Figure 28). In Figure
28, we have the vertices a1, a2 ∈ S1, b1, b2 ∈ S2 and c1, c2, c3, c4 ∈ S3.

c1

c1

b1 b1

b2 b2

c2

c2

c4
c3

a1 a1

a1 a1

a2

Figure 28:

(v) |
⋃3

t=1 St| = 9.
First, suppose that |Si| = 7, for some 1 ≤ i ≤ 3. Without loss of generality, we

may assume that i = 1. If S23 is non-empty, then the contraction of Γ2(L) contains
a copy of K3,7. Hence the graph Γ2(L) is not toroidal.

Also suppose that there is some i with 1 ≤ i ≤ 3, say 1, such that |Si| = 6 and
S23 is non-empty. Then we can find a copy of K4,6 in the contraction of Γ2(L).
Therefore, Γ2(L) is not a toroidal graph. So, for toroidality of Γ2(L), it is sufficient
S23 = ∅, because in this situation the complement of Γ2(L) contains C603, one of
the listed graphs in [4]. To do this, in Figure 1, we replace vertices x1, x2, . . . , x9

by b1, b2, c, a1, a3, a5, a2, a4, a6, respectively, where a1, a2, . . . , a6 ∈ S1, b1, b2 ∈ S2,
c ∈ S3. The embedding of Γ2(L) in the torus is pictured in Figure 29.

Now, suppose that all of the sets S1, S2 and S3 have 3 elements, exactly. If
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a2

a2

a3

a3

a5 a5

a6 a6

a4

a4

b2

c

b1

a1 a1

a1 a1

s13

Figure 29:

S12, S13 and S23 are empty, then the complement of Γ2(L) contains C315, one
of the listed graphs in [4] (see Figure 30). In Figure 30, we have the vertices
a1, a2, a3 ∈ S1, b1, b2, b3 ∈ S2, c1, c2, c3 ∈ S3. Therefore, the graph Γ2(L), which is
pictured in Figure 31, is toroidal.

c1

c2 c3

b1

b2

b3

a1

a2a3

Figure 30: C315

c1

c1

b2

b2

b3 b3

c3 c3

c2

c2

a3

a1

a2

b1 b1

b1 b1

Figure 31:
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Otherwise, we may assume that at least one of the sets S12, S13 or S23 is non-
empty. Then the contraction of Γ2(L) contains a copy of K3,7. Thus Γ2(L) is not
a toroidal graph. Otherwise, there exists some i, with 1 ≤ i ≤ 3, such that |Si| = 4
or |Si| = 5. In these situations, the contraction of Γ2(L) contains a copy of K4,5.
Therefore, Γ2(L) is not a toroidal graph. 2
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