초록
For saving electricity bill, energy storage system(ESS) is being installed in factories, public building and commercial building with a Time-of-Use(TOU) tariff which consists of demand charge(KRW/kW) and energy charge(KRW/kWh). However, both of peak reduction and ESS special tariff are not considered in an analysis of initial cost payback period(ICPP) on ESS. Since it is difficult to reflect base rate by an amount of uncertain peak demand reduction during mid-peak and on-peak periods in the future days. Therefore, the ICPP on ESS can be increased. Based on this background, this paper presents the advanced analysis method for the ICPP on ESS. In the proposed algorithm, the representative days of monthly electricity consumption pattern for the amount of peak reduction can be found by the kmeans clustering algorithm. Moreover, the total expected energy costs of representative days are minimized by optimal daily ESS operation considering both peak reduction and the special tariff through a mixed-integer linear programming(MILP). And then, the amount of peak reduction becomes a value that the sum of the expected energy costs for 12 months is maximum. The annual benefit cost is decided by the amount of annual peak reduction. Two simulation cases are considered in this study, which one only considers the special tariff and another considers both of the special tariff and amount of peak reduction. The ICPP in the proposed method is shortened by 18 months compared to the conventional method.