DOI QR코드

DOI QR Code

Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections

  • Wu, Helong (School of Civil Engineering, the University of Queensland) ;
  • Kitipornchai, Sritawat (School of Civil Engineering, the University of Queensland) ;
  • Yang, Jie (School of Engineering, RMIT University)
  • Received : 2018.02.05
  • Accepted : 2018.09.17
  • Published : 2018.11.10

Abstract

This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies. The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.

Keywords

Acknowledgement

Supported by : Australian Research Council

References

  1. Alibeigloo, A. and Liew, K. (2015), "Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method", Int. J. Appl. Mech., 7(1), 1550002. https://doi.org/10.1142/S1758825115400025
  2. Asadi, H., Bodaghi, M., Shakeri, M. and Aghdam, M.M. (2013), "On the free vibration of thermally pre/post-buckled shear deformable SMA hybrid composite beams", Aerosp. Sci. Technol., 31(1), 73-86. https://doi.org/10.1016/j.ast.2013.09.008
  3. Duan, W.H., Wang, Q. and Quek, S.T. (2010), "Applications of piezoelectric materials in structural health monitoring and repair: Selected research examples", Materials, 3(12), 5169-5194. https://doi.org/10.3390/ma3125169
  4. Emam, S.A. (2009), "A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams", Compos. Struct., 90(2), 247-253. https://doi.org/10.1016/j.compstruct.2009.03.020
  5. Esfahani, S., Kiani, Y., Komijani, M. and Eslami, M. (2014), "Vibration of a temperature-dependent thermally pre/postbuckled FGM beam over a nonlinear hardening elastic foundation", J. Appl. Mech., 81(1), 011004.
  6. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Compos. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  7. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  8. Komijani, M., Kiani, Y., Esfahani, S.E. and Eslami, M.R. (2013), "Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams", Compos. Struct., 98, 143-152. https://doi.org/10.1016/j.compstruct.2012.10.047
  9. Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, M.R. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041
  10. Li, S.-R., Teng, Z.-C. and Zhou, Y.-H. (2004), "Free vibration of heated Euler-Bernoulli beams with thermal postbuckling deformations", J. Therm. Stress., 27(9), 843-856. https://doi.org/10.1080/01495730490486352
  11. Li, S.-R., Su, H.-D. and Cheng, C.-J. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech.-Eng. Ed., 30(8), 969-982. https://doi.org/10.1007/s10483-009-0803-7
  12. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
  13. Lin, F. and Xiang, Y. (2014a), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stab. Dy., 14(1), 1350056. https://doi.org/10.1142/S0219455413500569
  14. Lin, F. and Xiang, Y. (2014b), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
  15. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Beam Under Axial Load", Int. J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083
  16. Rafiee, M., Yang, J. and Kitipornchai, S. (2013a), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005
  17. Rafiee, M., Yang, J. and Kitipornchai, S. (2013b), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031
  18. Rahimi, G., Gazor, M., Hemmatnezhad, M. and Toorani, H. (2013), "On the postbuckling and free vibrations of FG Timoshenko beams", Compos. Struct., 95, 247-253. https://doi.org/10.1016/j.compstruct.2012.07.034
  19. Shen, H.-S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  20. Shen, H.-S. and Zhang, C.-L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  21. Shen, H.-S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
  22. Shen, H.-S., He, X.Q. and Yang, D.-Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Nonlin. Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010
  23. Wadee, M.A. (2000), "Effects of periodic and localized imperfections on struts on nonlinear foundations and compression sandwich panels", Int. J. Solids. Struct., 37(8), 1191-1209. https://doi.org/10.1016/S0020-7683(98)00280-7
  24. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Compos. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  25. Wu, H.L., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dy., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
  26. Wu, H.L., Yang, J. and Kitipornchai, S. (2016a), "Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Thin-Wall. Struct., 108, 225-233. https://doi.org/10.1016/j.tws.2016.08.024
  27. Wu, H.L., Yang, J. and Kitipornchai, S. (2016b), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Compos. Part B-Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
  28. Wu, H.L., Kitipornchai, S. and Yang, J. (2016c), "Thermo-electromechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections", Smart Mater. Struct., 25(9), 095022. https://doi.org/10.1088/0964-1726/25/9/095022
  29. Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Appl. Math. Model., 42, 735-752. https://doi.org/10.1016/j.apm.2016.10.045
  30. Yang, J., Liew, K.M. and Kitipornchai, S. (2006), "Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates", Int. J. Solids Struct., 43(17), 5247-5266. https://doi.org/10.1016/j.ijsolstr.2005.06.061
  31. Yang, J., Ke, L.-L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stab. Dy., 15(8), 1540017. https://doi.org/10.1142/S0219455415400179
  32. Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  33. Zhang, L., Song, Z. and Liew, K. (2016), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B-Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044

Cited by

  1. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157