Acknowledgement
Supported by : Australian Research Council
References
- Alibeigloo, A. and Liew, K. (2015), "Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method", Int. J. Appl. Mech., 7(1), 1550002. https://doi.org/10.1142/S1758825115400025
- Asadi, H., Bodaghi, M., Shakeri, M. and Aghdam, M.M. (2013), "On the free vibration of thermally pre/post-buckled shear deformable SMA hybrid composite beams", Aerosp. Sci. Technol., 31(1), 73-86. https://doi.org/10.1016/j.ast.2013.09.008
- Duan, W.H., Wang, Q. and Quek, S.T. (2010), "Applications of piezoelectric materials in structural health monitoring and repair: Selected research examples", Materials, 3(12), 5169-5194. https://doi.org/10.3390/ma3125169
- Emam, S.A. (2009), "A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams", Compos. Struct., 90(2), 247-253. https://doi.org/10.1016/j.compstruct.2009.03.020
- Esfahani, S., Kiani, Y., Komijani, M. and Eslami, M. (2014), "Vibration of a temperature-dependent thermally pre/postbuckled FGM beam over a nonlinear hardening elastic foundation", J. Appl. Mech., 81(1), 011004.
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Compos. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Komijani, M., Kiani, Y., Esfahani, S.E. and Eslami, M.R. (2013), "Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams", Compos. Struct., 98, 143-152. https://doi.org/10.1016/j.compstruct.2012.10.047
- Komijani, M., Esfahani, S.E., Reddy, J.N., Liu, Y.P. and Eslami, M.R. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041
- Li, S.-R., Teng, Z.-C. and Zhou, Y.-H. (2004), "Free vibration of heated Euler-Bernoulli beams with thermal postbuckling deformations", J. Therm. Stress., 27(9), 843-856. https://doi.org/10.1080/01495730490486352
- Li, S.-R., Su, H.-D. and Cheng, C.-J. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech.-Eng. Ed., 30(8), 969-982. https://doi.org/10.1007/s10483-009-0803-7
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Lin, F. and Xiang, Y. (2014a), "Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams", Int. J. Struct. Stab. Dy., 14(1), 1350056. https://doi.org/10.1142/S0219455413500569
- Lin, F. and Xiang, Y. (2014b), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
- Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Beam Under Axial Load", Int. J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083
- Rafiee, M., Yang, J. and Kitipornchai, S. (2013a), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005
- Rafiee, M., Yang, J. and Kitipornchai, S. (2013b), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031
- Rahimi, G., Gazor, M., Hemmatnezhad, M. and Toorani, H. (2013), "On the postbuckling and free vibrations of FG Timoshenko beams", Compos. Struct., 95, 247-253. https://doi.org/10.1016/j.compstruct.2012.07.034
- Shen, H.-S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.-S. and Zhang, C.-L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shen, H.-S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
- Shen, H.-S., He, X.Q. and Yang, D.-Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Nonlin. Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010
- Wadee, M.A. (2000), "Effects of periodic and localized imperfections on struts on nonlinear foundations and compression sandwich panels", Int. J. Solids. Struct., 37(8), 1191-1209. https://doi.org/10.1016/S0020-7683(98)00280-7
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Compos. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Wu, H.L., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dy., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
- Wu, H.L., Yang, J. and Kitipornchai, S. (2016a), "Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Thin-Wall. Struct., 108, 225-233. https://doi.org/10.1016/j.tws.2016.08.024
- Wu, H.L., Yang, J. and Kitipornchai, S. (2016b), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Compos. Part B-Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
- Wu, H.L., Kitipornchai, S. and Yang, J. (2016c), "Thermo-electromechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections", Smart Mater. Struct., 25(9), 095022. https://doi.org/10.1088/0964-1726/25/9/095022
- Wu, H.L., Kitipornchai, S. and Yang, J. (2017), "Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams", Appl. Math. Model., 42, 735-752. https://doi.org/10.1016/j.apm.2016.10.045
- Yang, J., Liew, K.M. and Kitipornchai, S. (2006), "Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates", Int. J. Solids Struct., 43(17), 5247-5266. https://doi.org/10.1016/j.ijsolstr.2005.06.061
- Yang, J., Ke, L.-L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stab. Dy., 15(8), 1540017. https://doi.org/10.1142/S0219455415400179
- Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zhang, L., Song, Z. and Liew, K. (2016), "Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches", Compos. Part B-Eng., 85, 140-149. https://doi.org/10.1016/j.compositesb.2015.09.044
Cited by
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157