References
- Moss AR, Jouany JP, Newbold J, editors. Methane production by ruminants: its contribution to global warming. Ann Zootech EDP Sciences. 2000;231-253. doi: https://doi.org/10.1051/animres:2000119.
- EPA 430-P-18-001. Draft inventory of us greenhouse gas emissions and sinks: 1990-2016. 2009. https://www.epa.gov/sites/production/files/2018-01/ documents/2018_complete_report.pdf. Accessed: February 8, 2018.
- EIA. Emissions of greenhouse gases in the U. S. 2009. https://www.eia.gov/environment/emissions/ghg_report/notes_sources.php. Report number:doe/eia-0573(2009). Report number: doe/eia-0573(2009). Accessed: January 11, 2018.
- Hughes MN, Centelles MN, Moore KP. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic Biol Med. 2009;47(10):1346-53. https://doi.org/10.1016/j.freeradbiomed.2009.09.018.
- Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995; 73(8):2483-92. https://doi.org/10.2527/1995.7382483x
- Hogan KB. Anthropogenic methane emissions in the United States, estimates for 1990. 1993. https://nepis.epa.gov/. Accessed 2 Nov 2018.
- Wolin M, Miller T. Microbe interactions in the rumen microbial ecosystem. The rumen ecosystem (ed PN Hobson). 1988;343-59.
- Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol. 1981;42(6):1103-10.
- Ushida K, Jouany J. Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett Appl Microbiol. 1996; 23(2):129-32. https://doi.org/10.1111/j.1472-765X.1996.tb00047.x.
- Hristov A, Oh J, Lee C, Meinen R, Montes F, Ott T, et al. Mitigation of greenhouse gas emissions in livestock production: A review of technical options for non-CO2 emissions. FAO Animal Production and Health Paper No. 2013;177:1-206. doi: https://doi.org/10.1017/S1751731113000876.
- Dehority BA. Rumen microbiology. Nottingham: Nottingham University Press; 2003.
- Drewnoski M, Beitz DC, Loy DD, Hansen SL, Ensley SM. Factors affecting ruminal hydrogen sulfide concentration of cattle. Anim Ind Rep. 2011;657(1):11.
- Morine S, Drewnoski M, Hansen S. Increasing dietary neutral detergent fiber concentration decreases ruminal hydrogen sulfide concentrations in steers fed high-sulfur diets based on ethanol coproducts. J Anim Sci. 2014;92(7): 3035-41. https://doi.org/10.2527/jas.2013-7339.
- Martin C, Morgavi D, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal. 2010;4(03):351-65. https://doi.org/10.1017/S1751731109990620.
- Boadi D, Benchaar C, Chiquette J, Masse D. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci. 2004;84(3):319-35. https://doi.org/10.4141/A03-109.
- Benchaar C, Pomar C, Chiquette J. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can J Anim Sci. 2001;81(4):563-74. https://doi.org/10.4141/A00-119.
- Robertson L, Waghorn G, editors. Dairy industry perspectives o methane emissions and production from cattle fed pasture or total mixed rations in New Zealand. Proceedings-new zealand society of animal production; 2002.
- Dong Y, Bae H, McAllister T, Mathison G, Cheng K. Lipid-induced depression of methane production and digestibility in the artificial rumen system (rusitec). Can J Anim Sci. 1997;77(2):269-78. https://doi.org/10.4141/A96-078.
- Dohme F, Machmuller A, Wasserfallen A, Kreuzer M. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with rusitec. Can J Anim Sci. 2000;80(3):473-84. https://doi.org/10.4141/A99-113.
- Machmuller A, Kreuzer M. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Can J Anim Sci. 1999;79(1):65-72. https://doi.org/10.4141/A98-079.
- Wright A, Kennedy P, O'Neill C, Toovey A, Popovski S, Rea S, et al. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine. 2004;22(29):3976-85. https://doi.org/10.1016/j.vaccine.2004.03.053.
- Kuzma J, VerHage P. Nanotechnology in agriculture and food production: anticipated applications: project on emerging nanotechnologies; 2006.
- Bollo E. Nanotechnologies applied to veterinary diagnostics. Vet Res Commun. 2007;31:145-7. https://doi.org/10.1007/s11259-007-0080-x.
- Scott N. Nanotechnology and animal health. Revue Scientifique Et Technique-Office International Des Epizooties. 2005;24(1):425.
- Narducci D. An introduction to nanotechnologies: What's in it for us? Vet Res Commun. 2007;31:131-7. https://doi.org/10.1007/s11259-007-0082-8
- Swain PS, Rao SB, Rajendran D, Dominic G, Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim Nutri. 2016;2(3):134-41. https://doi.org/10.1016/j.aninu.2016.06.003.
- Mu H, Chen Y, Xiao N. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol. 2011;102(22):10305-11. https://doi.org/10.1016/j.biortech.2011.08.100.
- Luna-delRisco M, Orupold K, Dubourguier H-C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater. 2011;189(1):603-8. https://doi.org/10.1016/j.jhazmat.2011.02.085.
- National Academies of Sciences, Engineering, and Medicine. Nutrient requirements of beef cattle. Washington DC: National Academies Press; 2016.
- McDougall E. Studies on ruminant saliva. The composition and output of sheep's saliva. Biochem J. 1948;43(1):99. https://doi.org/10.1042/bj0430099
- Borhan MS, Capareda SC, Mukhtar S, Faulkner WB, McGee R, Parnell CB. Greenhouse gas emissions from ground level area sources in dairy and cattle feedyard operations. Atmosphere. 2011;2(3):303-29. https://doi.org/10.3390/atmos2030303.
- Rahman S, Lin D, Zhu J. Greenhouse gas (GHG) emissions from mechanically ventilated deep pit swine gestation operation. J Civil Environ Eng. 2012;2:104. https://doi.org/10.4172/2165-784X.1000104.
- Sarker, N. C., Rahman, S., Borhan, M. S., Rajasekaran, P., Santra, S., & Ozcan, A. (2018). Nanoparticles in mitigating gaseous emissions from liquid dairy manure stored under anaerobic condition. J Envron Sci. (In Press) doi: https://doi.org/10.1016/j.jes.2018.03.014.
- Goetsch A, Galyean M. Influence of feeding frequency on passage of fluid and particulate markers in steers fed a concentrate diet. Can J Anim Sci. 1983;63(3):727-30. https://doi.org/10.4141/cjas83-084.
- Sigg L. Redox potential measurements in natural waters: significance, concepts and problems. Redox: Springer; 2000. p. 1-12.
- Nutrition L. A. Target pH levels in silage. Dairy Herd Management 2016 http://www.dairyherd.com/quality-silage/target-ph-levels-silage. Accessed 12 Jan 2018.
- Bhandari S, Ominski K, Wittenberg K, Plaizier J. Effects of chop length of alfalfa and corn silage on milk production and rumen fermentation of dairy cows. J Dairy Sci. 2007;90(5):2355-66. https://doi.org/10.3168/jds.2006-609.
- Grant R, Mertens D. Influence of buffer pH and raw corn starch addition on in vitro fiber digestion kinetics. J Dairy Sci. 1992;75(10):2762-8. https://doi.org/10.3168/jds.S0022-0302(92)78039-4.
- Wu H, Yang D, Zhou Q, Song Z. The effect of pH on anaerobic fermentation of primary sludge at room temperature. J Hazard Mater. 2009;172(1):196-201. https://doi.org/10.1016/j.jhazmat.2009.06.146.
- Shete S, Tomar S. Ruminating Over Methane Emissions. NISCAIR-CSIR. 2010; 31-32.
- Colmenarejo M, Sanchez E, Bustos A, Garcia G, Borja R. A pilot-scale study of total volatile fatty acids production by anaerobic fermentation of sewage in fixed-bed and suspended biomass reactors. Proc Biochem. 2004;39(10): 1257-67. https://doi.org/10.1016/S0032-9592(03)00253-X.
- Lee SJ. Relationship between oxidation reduction potential (ORP) and volatile fatty acid (VFA) production in the acid-phase anaerobic digestion process. 2008. doi: http://hdl.handle.net/10092/1262.
- Blanc FC, Molof AH. Electrode potential monitoring and electrolytic control in anaerobic digestion. J Water Pollut Control Fed. 1973;45(4):655-67.
- Environmental Y. ORP Management in wastewater as an indicator of process efficiency. YSI, Yellow Springs, OH. 2008. https://www.ysi.com/File%20Library/Documents/Application%20Notes/A567-ORP-Management-in-Wastewater-asan-Indicator-of-Process-Efficiency.pdf. Accessed 2 Nov 2018.
- Moran J. Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics: Csiro publishing; 2005.
- Zhisheng C. Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese J Anim Nutr. 2011;8:023. https://doi.org/10.14202/vetworld.2015.888-891.
- Hook SE, Wright A-DG, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010;2010. https://doi.org/10.1155/2010/945785.
- Pouliquen F, Blanc C, Arretz E, Labat I, Tournier-Lasserve J, Ladousse A, et al. Ullmann's encyclopedia of industrial chemistry. 1985.
Cited by
- Identification of N -Oxide-Containing Aromatic Heterocycles as Pharmacophores for Rumen Fermentation Modifiers vol.9, pp.4, 2019, https://doi.org/10.3390/metabo9040062
- In Vitro and In Vivo Assessment of Dietary Supplementation of Both Natural or Nano-Zeolite in Goat Diets: Effects on Ruminal Fermentation and Nutrients Digestibility vol.11, pp.8, 2021, https://doi.org/10.3390/ani11082215