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Abstract 
 

Crowd escape event detection has become one of the hottest problems in intelligent 
surveillance filed. When the ‘escape event’ occurs, pedestrians will escape in a disordered way 
with different velocities and directions. Based on these characteristics, this paper proposes a 
Direction-Collectiveness Model to detect escape event in crowd scenes. First, we extract a set 
of trajectories from video sequences by using generalized Kanade-Lucas-Tomasi key point 
tracker (gKLT). Second, a Direction-Collectiveness Model is built based on the randomness of 
velocity and orientation calculated from the trajectories to express the movement of the crowd. 
This model can describe the movement of the crowd adequately. To obtain a generalized 
crowd escape event detector, we adopt an adaptive threshold according to the 
Direction-Collectiveness index. Experiments conducted on two widely used datasets 
demonstrate that the proposed model can detect the escape events more effectively from dense 
crowd. 
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1. Introduction 

With the development of digital information, internet technology has evolved by leaps and 
bounds. In recent years, an increasing number of CCTV cameras have been installed in the 
public place, which is to capture and detect the occurrence of abnormal events, such as mass 
brawl, traffic accidents and stampede, and then send out forewarning in time. Since 
recognizing the abnormal events from massive videos by hand is unrealistic, it is an urgent 
requirement to make abnormal event detection automatically. Many researchers have 
contributed a lot of work in this field, but the automation process still remains immature and 
complex.  

Anomaly event, which can be interpreted as the undesirable event, is opposite to the normal 
or regular event. Under the normal/regular scenarios, pedestrians prefer to follow their 
neighbors and share similar direction or speed. But when the anomaly event occurs, shown in 
Fig. 1, out of fear, people would escape in relatively chaotic directions and run as quickly as 
possible to avoid the potential danger [1], which increases the possibility of stampede death to 
some extent. As for detecting the anomaly events, it can be divided into two categories. First, it 
is the single-object detection [2], such as pedestrian fainting detection and pedestrian 
retrograding detection. Second, it is the multi-objects detection [3-4], which is to detect the 
crowd abnormal activities.  

 

 
Fig. 1. Crowd scatters as abnormal events happen 

In order to automatically detect crowd abnormal behaviors through surveillance videos, the 
primary task is to analyze the behavior of the crowd. In recent years, many computer vision 
methods have been proposed to deal with this problem for public safety. Mehran et al. [5] 
proposed a social force model to detect and localize abnormal crowd behaviors. The grid of 
moving particles is placed over the video frame and it is advected with the spatio-temporal 
average of optical flow. They regarded the moving particles as individuals and estimated their 
interaction forces to capture the dynamic behavior of the crowd. Recently, Zhou et al. [6] 
proposed a “Collectiveness” descriptor that integrated path similarities among crowd on 
collective manifold composed of self-driven particles and they applied it to crowd 
segmentation and collective merging. This “Collectiveness” descriptor can evaluate the level 
of individuals acting as a union in crowd scene.  
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Inspired by the above work, this paper focuses on the crowd abnormal activities and 
supposes the crowd (more than 50 people) have coherent and homogenous movement in a 
spatial region. A novel Direction-Collectiveness Model for crowd escape events detection is 
proposed. This model combines the randomness of direction with the Collectiveness 
descriptor and calculates a Direction-Collectiveness index which is a measure of the direction 
and movement randomness. 

There are two assumptions for the effectiveness of our model. One assumption is that the 
cause which makes the crowd escape exists in the scene. The other assumption is that, in most 
cases of escape movement, pedestrians deviate from their intended trajectories quickly, which 
leads to the chaotic directions and then the crowds become unsystematic. 

On the whole, the primary contributions of this paper can be summarized as: 
 The “Collectiveness” descriptor is applied to distinguish crowd self-organized and 

unsystematic behaviors. 
 A Direction-Collectiveness Model is proposed for detecting abnormal crowd escape 

event. 
 Compared with traditional methods, the detection accuracy of our method has been 

significantly improved and it demonstrates the wide performance margin. 
The remainder of this paper is organized below. Relevant work is reviewed in Section 2. 

The proposed Direction-Collectiveness Model for crowd escape detection is shown in Section 
3. Detection mechanism and the threshold selection strategy are introduced in Section 4. 
Section 5 contains the experimental results, which demonstrates the feasibility and 
effectiveness of the proposed method using some challenging benchmark video sequences. 
Section 6 summarizes the merits and limitations of the proposed approach, as well as our 
future work. 

2. Related Work 
Zhan et al. [7] and Popoola et al. [8] gave thorough reviews of anomaly detection in crowd 
scene. But in this section, we mainly pay attention to the crowd motion pattern extraction and 
abnormal detection of escape events. Several important topics are listed and analyzed as 
below. 

Crowd motion patterns or features extraction for escape behavior characterization have 
attracted considerable interest, which is very likely to improve the performance of anomaly 
detection. Most of the frequently-used patterns or features can be roughly divided into optical 
flow [5][9-11], trajectories [6][12-15], dynamic texture patterns [16-17] and spatio-temporal 
context [18-19]. In general, researchers need to select several of these patterns for feature 
fusion rather than just use only one. Zhang et al. [9] utilized a social attribute-aware force 
model (SAFM) based on optical flow by calculating the interaction force for abnormal crowd 
pattern detection. Zaidenberg et al. [10] proposed an unsupervised approach by combining 
dense trajectories based on optical flow with connected component analysis. This method can 
detect “sudden” movements in surveillance videos without requiring any training or camera 
calibration. Xu et al.  [11] proposed an event recognition method based on the pyramid Lucas 
& Kanade method to calculate the optical flow for every point at every pyramid level. The 
crowd motion pattern was constructed by the orientation and magnitude of particles movement. 
Cosar et al [12] proposed an integrated pipeline model by combining object tracking with pixel 
based analysis. And they integrated objects’ velocity and direction into their model for 
abnormal behavior analysis, especially for complex and finer behavior. Piciarelli et al [13] 



4358                                                       Wang et al.: Crowd escape event detection based on Direction-Collectiveness Model 

proposed a method based on single-class Support Vector Machine (SVM) clustering to 
identify anomalous trajectories. They classified the normal and abnormal trajectories without 
priori knowledge on the distribution of outliers. Trojanova et al. [14] introduced a framework 
for motion pattern segmentation in crowd scene, this method used short tracklets detected by 
dense trajectories and revealed the collective motion of individuals independent of the crowd 
density. Fradi and Dugelay [15] proposed a method based on analyzing some attributes of 
feature tracks.  The feature tracking allowed excluding feature points on the background and 
extracting long-term trajectories. The variation of these attributes (local density, speed, and 
flow direction) in time was employed to determine the ongoing crowd behaviors. Xiong et al. 
[16] proposed the energy model based on potential energy and kinetic energy to detect 
pedestrian gathering and running of crowd. They estimated the crowd density and Crowd 
Distribution Index (CDI) by extracting dynamic texture pattern to represent the potential 
energy and the dispersion respectively and combine CDI with optical flow to represent the 
kinetic energy. Cermeno et al. [17] proposed a holistic approach that they extracted global 
features like color, texture, and shape from each frame and put them together to form a frame 
feature vector. A Multi Layer Perceptron trained by back-propagation learning algorithm was 
used for feature vector classification. Wang et al. [18] employed high-frequency and 
spatio-temporal (HFST) features to characterize the crowd motion for both global and local 
abnormal crowd event detection. Kratz and Nishin [19] presented a statistical framework to 
model the local spatio-temporal crowd motion pattern in extremely crowded scenes. The 
temporal relationship between local spatio-temporal motion patterns is captured via a 
distribution-based Hidden Markov Model (HMM) and the spatial relationship by a coupled 
HMM. 

For abnormal detection of escape events, it is necessary to choose a suitable detection 
mechanism, which will have a great impact on the computational complexity and accuracy of 
the algorithm. The detection mechanism of most abnormal event detection methods can be 
categorized into supervised, unsupervised and semi-supervised. Supervised methods [20] 
build motion pattern models relying on the labeled data, test videos which do not fit the models 
will be regarded as abnormal. Thus, they need a large number of training data which contains a 
comprehensive set of all possible scenarios [22] and these abnormal events should be well 
defined. Unsupervised methods [10][23-24] build motion pattern models directly without any 
labeled training data in advance. They learn the normal and abnormal behavior patterns from 
the statistical properties of the observed data. Both HMM and Bayesian model are common 
probability statistical tools for unsupervised methods. Semi-supervised methods [25] fall 
in-between the first two and they build motion pattern models using partially labeled data at 
either the features level or the clips level. 

3. Direction-Collectiveness Model 
In normal group movement, pedestrians would like to follow neighbors who are aiming for the 
same directions in self-organized motion. In most cases of escape movement, pedestrians 
deviate from their intended trajectories quickly, which causes the chaotic directions and 
unsystematic crowd as shown as in Fig. 2. We choose the “Collectiveness” feature and 
direction feature to represent the degree of consistency and the degree of randomness, 
respectively. Fig. 3 shows the procedure of our model. 
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Fig. 2. Representative frames of normal and abnormal event: (a) normal walking, (b) abnormal escaping 

 
Fig. 3. The system framework 

We first use the generalized Kanade-Lucas-Tomasi key point tracker (gKLT) [26] to extract 
motion particles’ trajectories for each frame to get the trajectory coordinate matrix. Then, the 
velocity and direction of particles can be calculated by using the coordinate matrix. Fig. 4 
shows the mapping graph of particles which are extracted by gKLT and their parameters. 
Where  

it
k  is i-th particle at time t,  

it
X  and  

it
Y  are the horizontal and vertical coordinates of 

particles respectively, N is the number of particles, and  
it

V  and  
it

θ  is the velocity and 
direction of particles respectively. 

 
Fig. 4. Mapping graph of particles extracted by gKLT key point tracker 

In order to facilitate the description of the subsequent anomaly detection algorithm, the key 
points set   tK  at time t which obtained by the gKLT tracking algorithm is expressed as 
follows: 

1 2, ,  { , }
Nt t t tK k k k=   ,                                                     (1) 

{ , , , }
i i i i it t t t tk X Y V θ=  .                                                     (2) 
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Then particles’ position, direction and magnitude are calculated to obtain the degree of 
collectiveness and direction chaos. After that, the degree of direction chaos is combined with 
the collectiveness to get an index which is defined as Direction-Collectiveness. Finally, the 
Direction-Collectiveness index is used to detect the crowd abnormal event with an empirically 
defined threshold. 

3.1 The Collectiveness Feature 
In certain scenarios, individual movement influences neighbors’ motion and eventually leads 
to the variation in the motion of the whole crowd. Hence, crowd collectiveness should be 
determined by the collectiveness of its constituent individuals. In this paper, collectiveness can 
be defined as the behavior similarity of neighbors in crowd motion, and behavior similarity 
can be characterized by the velocity correlation between adjacent particles. Suppose   ,

i jt tk k  
are adjacent particles,  ϕ  is the angle between the velocity directions of the two particles, the 
behavior similarity   ( , ) [0,1]

i jt t tw k k ∈  is defined as: 
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2( , )
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2

i j

t

t t t
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The above method only considers the influence between adjacent particles. However, when 
two particles have a certain distance that they are separated by several other particles, the 
result would be unreliable to calculate the behavior similarity of these two particles using the 
above formula. In order to solve this problem, the behavior similarity should be estimated 
based on the path topological structure [5]. 

Assume that 0 1{ , , , }L Lk k kγ =  0( , )
i jt L tk k k k= =  represents a path of length L from 

it
k

 
to 

jtk
 
passing through 1 2 1, , , Lk k k −

.Then the path behavior similarity of all L-length paths 

between 
it

k  to 
jtk  is defined as: 

   
10
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L L
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t t t t t t tn

P P
C k k C k k w k kγ

γ γ
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where P contains all L-length paths between 
it

k  to 
jtk . Thus, the Collectiveness index of 

single particle can be denoted as:  

   
1

( ) { ( ( , ))}
i i jt j

L
t L t tL k K

Collectiveness k C k kω∞

= ∈
= ×∑ ∑  ,                      (6) 

where ω  is the real value regularization factor which contributes to reduce the effect of the 
Collectiveness index exponentially increasing with L. And the crowd Collectiveness index at 
time t which is bounded by [0,1] can be defined as:  

   
1

1( ) ( )
i

N
ti

Collectiveness t Collectiveness k
N =

= ∑  .                             (7) 

3.2 The Direction-Collectiveness Descriptor 
While the motion dynamics of the crowd escape events are extracted based on the 
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Collectiveness descriptor and it has superior performance for high density crowd, with the 
decrease in the number of crowds, the extracted trajectories will be reduced accordingly. It is a 
challenge for calculating the behavior similarity of the Collectiveness model, and the 
measuring performance will decline. In order to suppress the performance degradation, we 
propose a Global-Direction descriptor to extract the motion patterns at the global level while 
the Collectiveness descriptor calculates the behavior similarity of the adjacent particles at the 
local level. The Direction-Collectiveness Model can be represented by combining these two 
salient descriptors mathematically. 

 When an abnormal event occurs, pedestrians instinctively spread out from the dangerous 
place and deviate from their intended trajectories, which may lead to an increased randomicity 
of the crowd motion direction. The directions of the mean velocity ( )mean tθ  and the maximum 
velocity  max ( )tθ  of all particles are two important indexes that characterize the overall motion 
pattern of the crowd, and different between the velocity direction of individual particles 

it
θ

 
and the relevant ( )mean tθ  and max ( )tθ  can reflect the deviation of individual particles from the 
crowd motion. Hence, the Global-Direction descriptor ( , ) [0,1]Direction i t ∈  is the degree of 
directional randomness for particle i at time t can be defined as: 

   

2 2
max( , ) ( , )( , )

2
mean i t i tDirection i t θ θ

ρ
∆ + ∆

= ⋅  ,                               (8) 

where ( , )mean i tθ∆  is the difference between the velocity direction of the particle i and the 
mean velocity direction of all particles at time t, max ( , )i tθ∆  is the difference between the 
velocity direction of the particle i and the maximum velocity direction at time t. 

And
2 2

max( , ) ( , )
2

mean i t i tθ θ∆ + ∆  is the root mean square of ( , )mean i tθ∆  and max ( , )i tθ∆  to 

characterize the average dispersion of directional randomness for particle i. And ρ  is the 
normalization factor to maintain the range of ( , )Direction i t  between 0 to 1, let 1/ρ π=  
because the range of ( , )mean i tθ∆  and max ( , )i tθ∆  are both between π−  to π . Therefore, the 
formula can be simplified as: 

   

2 2
max( , ) ( , )

( , )
2

mean i t i t
Direction i t

θ θ
π

∆ + ∆
=  .                              (9) 

The specific formulas of ( , )mean i tθ∆  and max ( , )i tθ∆  are as follows: 

   

1( , ) ( ) i

i i

N
ti

mean t mean ti t t
N
θ

θ θ θ θ =∆ = − = − ∑  ,                               (10) 

   
max max( , ) ( )

it
i t tθ θ θ∆ = −  .                                            (11) 

In the most case of escape behaviors, the Collectiveness index is considerably below normal 
behaviors’ level. Meanwhile the directional distribution of crowd motion will become chaotic. 
Combining these two salient features makes it possible to distinguish abnormal behaviors 
from video sequences. Feature addition and feature multiplication are two commonly used 
methods of feature combining. Fig. 5 shows the fused value curves by using these two 
methods. With the direction from orderly to randomly (from 0 to 1) and the Collectiveness 
index from large to small (from 1 to 0), the fused value of feature addition is showing 
parabolic trend growth followed by exponential growth. And the fused value of feature 
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multiplication is showing exponential growth with the larger base number than addition 
method. Thus, using feature multiplication rather than feature addition can be better to 
distinguish between normal and escape behavior and the Direction-Collectiveness descriptor 
at time t can be denoted as follow: 

1

1- ( ) ( , ) 1 ( )
i

N
ti

Direction Collectiveness t Direction i t Collectiveness k
N =

= −∑ ,      (12) 

where N is the quantity of particles at time t. 

 
Fig. 5. The curve of features addition and features multiplication 

After the above operation, the Direction-Collectiveness value for each frame is obtained, 
and the value is between 0 and 1. Large value indicates that the cluster degree is low and the 
motion direction is chaotic. Fig. 6 shows the Collectiveness curve and the 
Direction-Collectiveness curve from normal walking to abnormal escaping.  

 
Fig. 6. Two curves from (a) normal walking to (b) abnormal escaping: (c) Collectiveness curve, (d) 

Direction-Collectiveness curve 

From frame 1 to 190, people walked normally, and crowd gathered from frame 191 to 334, 
then crowd suddenly fled at the 335th frame. Through the varying curve we can see that, the 
Collectiveness curve begins to increase at about 14th frame when the pedestrian gradually 
appeared in the surveillance area, and after the 167th frame it falls into the trough. In addition, 
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in the 271~286 frame and 317~335 frame, the curve has two steep rise with small amplitude. 
The Direction-Collectiveness curve begins to increase at about 340th frame which coincides 
with the time of the actual escape. And at about 358th frame it reaches the peak. After 372th 
frame, curve begins to fall with pedestrians leaving out of the surveillance area. Through the 
comparison of the two curves we can see that our model which added global direction 
component can better distinguish between normal and escape events than the original 
collectiveness model. 

4. Abnormal Crowd Event Detection 
In the previous section, we propose the Direction-Collectiveness descriptor and introduce how 
to apply this new descriptor for abnormal crowd event detection. The test video will be input 
into our model to calculate the Direction-Collectiveness value for each frame. Considering the 
continuity of the abnormal behavior, when a sudden change of the Direction-Collectiveness 
value arises, we regard it as the noise and the system will not alarm. And when this rise is 
maintained for over 10 consecutive frames, it is assumed that an abnormal behavior occurs. 
We summarize the algorithm in Algorithm 1. 
 

Algorithm 1   Anomaly Detection 
INPUT: { }

i i it t t tX ,Y ,V i∈K  
1: Calculate tw  using Eq.3 
2: Calculate Collectiveness using Eq.7 
3: Calculate Direction-Collectiveness using Eq.11 

 4: 0countT ←  
5: for t=1 to length(Video) 
6:      if Direction-Collectiveness(t)>threshold then 
7:         1count countT T= +  
8:      else 0countT =  
9:      end if 

10:      if 10countT >  then 
11:      do Alarm! 
12:      end if 

13: end for 
 
After obtaining the curve of Direction-Collectiveness, it is crucial to find an appropriate 

threshold to distinguish between normal and abnormal for detection performance and accuracy. 
Manually selecting the appropriate threshold will result in inefficient detecting and 
universality lacking. In this paper, we use iterative threshold method to train the threshold. Let 
Φ  be the matrix which stores the Direction-Collectiveness value for each frame, and let the 
initial threshold Th0 be the average of the maximum and minimum values in matrix Φ .The 
video frame is divided into abnormal frames and normal frames according to the obtained 
initial threshold. Then calculate the average Direction-Collectiveness values of the normal 
frames norφ  and abnormal frames abnφ  respectively. Update the new threshold Th to be the 
average of norφ  and abnφ  and constantly iterate until the threshold no longer changes, the final 
threshold is used for anomaly detection. We summarize the algorithm in Algorithm 2. The 
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thresholds of our model are mainly affected by the angle between the shooting direction of the 
camera and the horizontal direction of the ground. Due to the tangential distortion, the smaller 
the angle is, the less significant the angle between the adjacent particles in the direction of 
velocity, so the threshold is relatively smaller. 

 
Algorithm 2   Threshold Selection 
INPUT: Direction-Collectiveness set { (1), (2), , (n)}φ φ φ=Φ   

1: 0 (MAX( ),MIN( )) / 2Th = Φ Φ  
2: 0 0nor norNφ ← ←  
3: 0 0abn abnNφ ← ←  
4: for t=1 to length(Video) 
5:      if (t) 0Thφ ≤  then 
6:        (t)nor norφ φ φ= +  
7:        1nor norN N= +  
8:      else (t)abn abnφ φ φ= +  
9:            1abn abnN N= +  

10:      end if 
11: end for 

12: nor /nor norNφ φ=  

13: abn /abn abnNφ φ=  

 14: nor abn( ) / 2Th φ φ= +  
15: if 0Th Th=  then 
16:      OUTPUT  Th 

 17: else Update 0Th Th= then 
18:        back to STEP2 
19: end if 

5. Experimental Results 
Our model is evaluated on PETS2009 dataset [27] and UMN dataset [28] which have been 
widely used for performance evaluation of anomaly detection. In order to verify the flexibility 
and robustness of our model, we also evaluated the proposed method on WEB dataset [29] 
which have more complex and diverse escape event videos. We compare our 
Direction-Collectiveness model (D-CM) with the Collectiveness Model (CM) [6], the Social 
Force Model (SFM) [5], the Bayesian Model (BM) [30], and the Energy Model (EM) [31]. In 
order to assess our model more intuitively, we manually mark the ground truth of all the test 
video sequences in advance. The evaluation criterion is defined as follows: 

   
Accuracy(ACC) TP TN

N
+

=  ,                                               (13) 

 

   

TPTPR
TP FN

=
+

 ,                                               (14) 
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FPFPR
FP TN

=
+

 ,                                               (15) 

where N is the total number of frames for the test video. The Receiver Operating Characteristic 
(ROC) curve which consists of true positive rate (TPR) and false positive rate (FPR) is used to 
measure the accuracy for multiple threshold values. Where true positive (TP) is abnormal 
sample that is correctly detected, true negative (TN) is normal sample that is correctly detected, 
false positive (FP) is abnormal sample that is incorrectly detected and false negative (FN) is 
normal sample that is incorrectly detected [32]. Due to the limited number of samples, the 
cross validation method is applied for data training and testing. When a video sequence in a 
certain dataset is used for test sample, other remaining video sequences of the same dataset are 
regarded as training samples. 

We implement the proposed model with MATLAB R2014a, and all the simulation 
experiments are performed on a 3.10GHz quad core with 4.00GB of RAM. For a given video 
with a resolution of 768×576, it takes on average 1.06 second to compute the 
Direction-Collectiveness value and takes on average 0.269 second to detect abnormal crowd 
escape event. 

5.1 Evaluation on PETS2009 Dataset 
The PETS2009 dataset provides video sequences from a multi-camera installation. In this 
paper, we use their event recognition set which have four different cameras in four different 
views recording at the same time [17].Since significant differences in location and 
illumination among four views, it is extremely challenging to recognize abnormal escape 
event. In tested scene, pedestrians walk orderly to the gathering point in the first 190 frames. 
Then they remain in a state of aggregation until the 334th frame, and they quickly escape in 
multiple directions until the 377th frame. Our model and the other four models are used to 
detect anomalies in four views video sequences and the accuracy of four models is obtained by 
comparing their results with ground truth. The detection results of five models are shown in 
Figs. 7-10, the green bar below the image indicates normal behavior and the red bar indicates 
escape behavior. Table 1 illustrates the accuracy of these methods for abnormal escape 
detection. As shown in Table 1, the accuracy of our model is superior to the other four 
methods in four views, and our model also has more stable performance than the other four 
algorithms. In particular, our model has a qualitative improvement in the detection accuracy 
compared to the original Collectiveness model. On the other hand, in the forth view, the 
detection performance of our model is slightly declined by the illumination and the shooting 
angle. 

 
Fig. 7. Abnormal detection result of view 1 in PETS2009 dataset 
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Fig. 8. Abnormal detection result of view 2 in PETS2009 dataset 

 
Fig. 9. Abnormal detection result of view 3 in PETS2009 dataset 

 
Fig. 10. Abnormal detection result of view 4 in PETS2009 dataset 

Table 1. Accuracy (%) comparison of D-CM with CM, SFM, BM and EM in PETS2009 dataset 
 CM [6] D-CM SFM [5] BM [30] EM [31] 

View_001 81.43 96.35 91.22 96.01 93.15 
View_002 72.50 94.18 89.36 94.15 84.17 
View_003 79.15 95.98 94.68 95.21 92.12 
View_004 73.89 92.64 72.14 91.49 86.25 

Average Accuracy 76.74 94.78 86.85 94.22 88.92 
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In order to compare the sensitivity and specificity of these algorithms, we plot the ROC 
curve of the five models by frame-level measurement. We treat one frame as a test sample, the 
escape frames and normal frames in the ground truth are labeled as positive samples and 
negative samples respectively. The TPR and FPR are computed with the threshold increasing 
in turn, and they form the ROC curve which is shown in Fig. 11. Subsequently, the area under 
the ROC curve is calculated as AUC, and it is used to evaluate the detection performance. 
From the data in the Table 2, we can see that our model has higher AUC than the other four 
algorithms, which demonstrates that our model has better robustness. 

 
Fig. 11. The ROC curves of abnormal detection in PETS2009 dataset 

Table 2. AUC comparison of D-CM with CM, SFM, BM and EM in PETS2009 dataset 
Model CM [6]  D-CM SFM [5] BM [30]  EM [31] 
AUC 0.902 0.992 0.927 0.985 0.943 

 

5.2 Evaluation on UMN Dataset 
The UMN dataset provides video sequences from a single-camera installation with 
multi-scenario. The total length of the video is 7740 frames, in which 1431 frames involve 
escape.  It contains 11 different escape scenarios which can be divided into three different 
shooting scenes (scene 1: lawn, scene 2: lobby and scene 3: square). According to the different 
scenes, the first two scenarios are divided into the scene 1, the following six scenarios are 
divided into the scene 2, and the last three scenarios are divided into the scene 3. The crowd 
movement in this dataset can be described as: the pedestrians walk around freely in outdoor or 
indoor open area, and then they suddenly flee away from the field of vision. Table 3 shows the 
accuracy of these methods for abnormal escape detection in the three scenes and some 
representative results are shown in Figs. 12-14. The average accuracy of our methods achieves 
an accuracy of 91.89%, which is higher than that of CM (79.25%), SFM (85.86%), and EM 
(90.39%) and lower than that of BM (97.01%). Compared with the Collectiveness model, our 
method has been greatly improved in terms of accuracy. But compared with the previous 
results in PETS2009 dataset, the detection performance of our method in UMN dataset has 
declined. The detection results in Fig. 12-14 show that our model will regard few normal 
frames which have extremely disordered directions as escape frames. From the following 
representative results, it can also demonstrate that compared with the other four models, our 
model can detect the escape frames more completely. 
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Fig. 12. Abnormal detection result of scenario 1 in UMN dataset 

 
Fig. 13. Abnormal detection result of scenario 2 in UMN dataset 

 
Fig. 14. Abnormal detection result of scenario 3 in UMN dataset 

Table 3. Accuracy (%) comparison of D-CM with CM, SFM, BM and EM in UMN dataset 
 CM [6] D-CM SFM [5] BM [30]  EM [31] 

Scene_001 79.44 92.45 84.41 99.03 90.79 
Scene_002 74.56 91.37 82.35 95.36 91.84 
Scene_003 83.76 91.86 90.83 96.63 88.53 

Average Accuracy 79.25 91.89 85.86 97.01 90.39 
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The ROC curve of the UMN dataset is shown in Fig. 15. There are 1431 positive samples 
and 6309 negative samples in the dataset. The AUC of our method is 0.975, which is shown in 
Table 4. The result shows that our method outperforms these state of the art methods except 
BM (0.986). We attribute the performance to the fact that the robustness of our methods will 
reduce to some extent for detecting normal behaviors which have extremely disordered 
directions. 

 
Fig. 15. The ROC curves of abnormal detection in UMN dataset 

Table 4. AUC comparison of D-CM with CM, SFM, BM and EM in UMN dataset 
Model CM [6] D-CM SFM [5] BM [30] EM [31] 
AUC 0.952 0.975 0.960 0.986 0.968 

5.2 More Diverse Examples of Crowd Escape Detection 
To make the evaluation more universal and find limitations of the proposed methods, we also 
test these five models in WEB dataset. The WEB dataset is a collection of abnormal escape 
events in real surveillance scenes or TV series. The videos in this dataset are collected from 
Thought Equity [29], and we have numbered the measured videos. Therefore, these videos can 
be found from Thought Equity website using their unique numbers. Compared with the 
man-made dataset, the scenes of WEB dataset are more complex and more difficult to detect 
due to the occlusion, illumination and obstacle. There are four different types of videos in 
WEB dataset selected for detection. In the first video, the crowd ran with an orderly manner at 
the first 200 frames, and then they began scattered escaping until the 409th frame. This 
sequence was taken in the dark environment with the low contrast. The second video contains 
183 frames and it has the complex background, shooting incident occurred at the 68th frame, 
and then the crowd fled and evaded until the end of the video. The background of the third 
video is the football field, some people were still while few people walked in pairs. At the 450 
frame, the crowd panicked and disorderly escaped until they disappeared in the screen. 
Different from other escape test videos, the crowd in this video was initially distributed around 
the edge of the screen. When a dangerous situation occurred, they fled into the frame where 
there are serious occlusions which make the identification of the crowd motion patterns more 
difficult. The fourth is a low-angle shot video, the crowd was still in the first 375 frames, and 
then they began to escape following the same path from the center to the right side of the 
screen.  

Table 5 shows the accuracy of these methods for abnormal escape detection in WEB 
dataset and the final results are shown in Figs. 16-19.  It shows that our method outperforms 
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the other four models for the first three scenarios which illustrates that our model is robust to 
low-contrast, occlusion and complex background. However, for the last scenario, the accuracy 
of our method is only higher than CM and SFM, and has a certain gap with the EM and BM. It 
illustrates the limitation that the proposed method may incorrect recognize few escaping 
behaviors which have orderly motion patterns as the normal behaviors. 

 
Fig. 16. Abnormal detection result of scenario 1 in WEB dataset 

 
Fig. 17. Abnormal detection result of scenario 2 in WEB dataset 

 
Fig. 18. Abnormal detection result of scenario 3 in WEB dataset 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018                          4371 

 
Fig. 19. Abnormal detection result of scenario 4 in WEB dataset 

Table 5. Accuracy (%) comparison of D-CM with CM, SFM, BM and EM in WEB dataset 
 CM [6] D-CM SFM [5] BM [30] EM [31] 

Web_001 
(No.345182_162741) 78.24 93.94 83.93 93.23 89.69 

Web_002 
(No.3452204_031) 85.80 92.10 79.68 91.84 90.22 

Web_003 
(No.2632377671_001) 79.56 91.37 76.10 84.87 83.17 

Web_004 
(No. 2632377671_025) 63.53 79.96 69.22 87.12 84.51 

Average Accuracy 76.78 89.34 77.23 89.26 86.90 

5.3 Time Complexity Analysis 
In this paper, the proposed approach includes two main steps: one is extracting motion 
particles’ trajectories and the other is calculating the Direction-Collectiveness index. So the 
cost of our method also is comprised of two parts. The cost of motion particles’ trajectories 
extraction is mainly determined by the optically flow. And the cost of the 
Direction-Collectiveness index calculation is mainly determined by the number of particles. 
Therefore, the time complexity is 2( ) ( log )T n O n n= ⋅ , where n is the number of the particles 
extracted by gKLT key point tracker. 

6. Conclusions 
In this paper, the Direction-Collectiveness Model is proposed for crowd escape event 
detection. When unusual event occurs, people will instinctively scattered run and escape away 
from dangers in most cases. Thus, we extract the Collectiveness index and direction 
randomness information to characterize the differences between normal events and escape 
events. Experimental results confirm that our model has a qualitative improvement in the 
detection performance compared to the Collectiveness model. Experiments conducted on 
PETS2009 dataset and WEB dataset demonstrate that the detection performance of our model 
is superior to several state-of-the-art models in terms of accuracy and AUC. And our model 
can reduce the impact of low-contrast, occlusion and complex background. However, 
experiments conducted on UMN dataset and scenario 4 of WEB dataset show that the 
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detection performance of our model may be degraded when dealing with the normal behavior 
which has chaotic directions, and the escape behavior has orderly motion patterns. This is the 
major limitation of our method, and it should be investigated in the future work. 
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