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Abstract 
 

This research aims at a new practical Intent fuzzing tool for detecting Intent vulnerabilities 
of Android apps causing the robustness problem. We proposed two new ideas. First, we 
designed an Intent specification language to describe the structure of Intent, which makes our 
Intent fuzz testing tool flexible. Second, we proposed an automatic tally method classifying 
unique failures. With the two ideas, we implemented an Intent fuzz testing tool called Hwacha, 
and evaluated it with 50 commercial Android apps. Our tool offers an arbitrary combination of 
automatic and manual Intent generators with executors such as ADB and JUnit due to the use 
of the Intent specification language. The automatic tally method excluded almost 80% of 
duplicate failures in our experiment, reducing efforts of testers very much in review of failures. 
The tool uncovered more than 400 unique failures including what is unknown so far.  We also 
measured execution time for Intent fuzz testing, which has been rarely reported before. Our 
tool is practical because the whole procedure of fuzz testing is fully automatic and the tool is 
applicable to the large number of Android apps with no human intervention. 
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 1. Introduction 

Android is one of dominant computing platforms today because it has the leading mobile 
market in smart phones and it is open source software. The number of Android apps running 
on the platform reached 2.81 millions as of December 2016. Many people in the world use 
these Android apps on a daily basis. A software with such a large user base needs to be very 
robust and secure, otherwise even a small number of defects may lead to significant costs. 

However, Android has been known to be vulnerable because of a few reasons. One is 
because there are many Android platform versions coexisting in the market from the newest 
version to the old ones. Another is because of the well-known fragmentation problem of 
compatibility that stems from the nature of open-source software. The third reason is the 
loosely coupled component based structure of Android apps, though the component structure 
is good at modularity and reuse, which should be used very carefully. This paper focuses on 
the third aspect: a robustness problem caused by malformed Inter-component communication 
in Android apps. 

Most Android programs are written in Java with Android APIs (Application Programming 
Interfaces). Android is Google's open-source platform for mobile devices, and it provides the 
APIs necessary to develop applications for the platform in Java [1]. An Android program 
consists of components such as Activity, Service, and Broadcast Receiver where the 
components communicate among themselves by sending messages called Intents. 

Due to Intents that may miss any fields or may carry ill-formed values, Android components 
are vulnerable. Let us consider an example of Android Activity component Note in Fig. 1. 
This Activity component constitutes a mobile screen with windows such as text labels, 
displaying a title and a content given by an Intent with which this component is activated. A 
caller component should set these title and content strings in the Intent properly before it 
activates Note to invoke its onCreate method. Also, a caller component should specify an 
action in the Intent to request Note to perform. As shown in the code below, the Note Activity 
accepts two actions: “android.intent.action.INSERT” (or “INSERT” in short) for creating a 
new memo and “android.intent.action.EDIT” (or “EDIT” in short) for editing an existing one. 

 

public class Note extends Activity { 

  String title; 

  String content; 

  void onCreate(Bundle savedInstanceState) { 

    Intent intent = getIntent(); 

    String action = intent.getAction(); 

    if(action.equals("android.intent.action.EDIT")){ 

       title   = intent.getStringExtra("title"); 

       content = intent.getStringExtra("content");  

    } else if(action.equals("android.intent.action.INSERT")){ 

       title   = "No title";  

       content = "Type your memo"; 

    } 

    // Display a title and a content 

  }   

} 
Fig. 1. Android Program Example 
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There are four kinds of Intent vulnerability in the example. First, if an action is missing, it is 

set as NULL and then the invocations of action.equals will throw NullPointerException. 
Second, if any actions other than “INSERT” and “EDIT” are specified, displaying the title and 
content will cause to throw NullPointerException. This is because title and content become 
NULL on the other actions. Third, if any Intent with “EDIT” action misses one of values for 
two keys “title” and “content”, the same problem will happen: the invocation of 
getStringExtra for the missing key/value will return NULL. Fourth, if any value for the two 
keys is set to be, say, an integer (a value of the incorrect type), the invocation of getStringExtra 
method for the incompatible key/value will return NULL, causing the same problem.  

Recent researches [2][3][4][5][6][7] have developed Intent fuzzers to detect such Intent 
vulnerabilities. Basically, they generate arbitrary (possibly malformed) Intents by their own 
strategies, and test if any running of Android app crashes on invocation with the Intents. It has 
been reported that they have uncovered many interesting Intent vulnerabilities in Android 
apps.  

The structure of the existing Intent fuzzers, however, has two common problems. First, each 
Intent fuzzer sticks to one's own Intent generation strategy. One cannot use the other Intent 
fuzzer's strategy without changing the implementation, limiting the capability to detect Intent 
vulnerability to one’s own strategy. Null IntentFuzzer [2] set only the null value to all Intent 
fields. JarJarBinks (JJB) [3] improved it with random and semi-valid Intents. DroidFuzzer [4] 
focused only on the data field of Intents with malformed audio and video files. In IntentFuzzer 
[5], IntentDroid [6], and ICCFuzzeer [7], some static and dynamic analyses had been 
employed to construct Intents more relevant to what Android apps deal with.  

Second, the researches on Intent fuzz testing have rarely reported how to classify failures 
automatically in Android crash logs. Several different Intents can lead to the same failure, and 
so we should identify the multiple occurrences of the same failure in testing with the Intents. 
Due to the nature of fuzz testing, the number of Intents to test with tends to be large, and so the 
manual classification of failures in testing could be very time consuming. This problem would 
be more serious when millions of Android apps needed to be tested such as in Android 
Marketplace.  

To address the two problems, we first propose an Intent fuzz testing tool, which clearly 
decouples Intent generation from execution with Intents. For this, we design Intent 
specification language as a flexible way to describe the structure of Intents. The proposed 
language offers a well-defined interface so that programmers or any tools can write arbitrary 
Intent specifications. According to the specifications, a generator will produce Intents, which 
an executor will take for testing.  

For the second problem, we propose an automatic tally method for classifying failures using 
a traditional algorithm [8] on the longest common subsequence (LCS) problem. The similarity 
of two crash logs is defined by the ratio of the length of the LCS over the longer length of the 
two crash logs. This criterion can identify two failures resulting from the same exception in the 
same program point, allowing some minor differences such as thread IDs that are numbered 
differently per each run.  

Based on the two new ideas, we have implemented a fully automatic Intent fuzzing tool, 
which we believe is the first practical one of the existing tools. We have evaluated 50 
commercial Android apps using the developed tool to automatically uncover more than 400 
unique failures of Intent vulnerability causing crashes. We have analyzed the experiment 
results in detail. The tool and the experiment result are available in a companion web site [9] 

The contributions of this paper are summarized as follows: 
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 We have designed an Intent specification language to describe the structure of Intent, 
which makes our Intent fuzzing tool flexible allowing an arbitrary combination of Intent 
generators and Intent executors through a well-defined interface.  

 We have also proposed a tally method automatically classifying failures determined by 
the LCS algorithm. Also, we have shown that the method can reduce much efforts on 
manually analyzing Android crash logs to identify different failures. 

 The two new ideas mentioned above are not solely for a particular tool, but they are 
universally applicable to all Intent fuzzing tool for Android apps. Particularly, the idea 
of using Intent specification language can be a basis for the existing tools to cooperate 
with another. 

 We have implemented an Intent fuzzing tool, and have demonstrated the effectiveness 
of the two ideas by applying it to 50 commercial Android apps and finding more than 
400 unique Intent vulnerabilities including one unknown so far.  

 Our Intent fuzzing tool is practical because the whole procedure of fuzz testing is fully 
automatic and the tool is applicable to the large number of Android apps with no human 
intervention. 

In Section 2, we discuss related work on Intent fuzz testing for Android apps. Section 3 
presents what is Android Intent vulnerability. Section 4 introduces our proposal on Intent 
specification language. In Section 5, we describe the design and implementation of our fully 
automatic Intent fuzzing tool in detail. In Section 6, we show experiment results with 
commercial Android binary apps. In Section 7, we compare our tool with the existing ones. 
Section 8 concludes. 

2. Related Work 
Null IntentFuzzer [2] was the first Intent fuzzing tool to test Intent vulnerability for 

robustness of Android apps. It has the form of an Android app. It gathers information on 
installed applications and their Intent filters through Android API. It sets NULL for all fields 
of Intents to test Android apps with.  

Maji et al [3] extended Null IntentFuzzer to develop a new one called JarJarBinks (JJB), 
which is a standalone Android app capable of retrieving a list of installed Android apps 
together with Intent filters. It generates both valid and semi-valid Intents based on the 
retrieved information under four strategies: semi-valid action and data, blank action or data, 
random action or data, and random extra data. It was reported that JJB is a semi-manual 
approach. When a system alert is generated due to application crash, a user is involved in 
closing the alert dialog boxes. When an Activity is started as a new task, JJB cannot close it in 
an automatic manner since it is an Android app. In addition to these, JJB also requires a user's 
intervention to stop, for example, a thread hang [3].  

DroidFuzzer [4] focused on the data field of Intents being set with malformed audio and 
video files only for Activity type components. Based on the extracted URI and MIME data 
type information from an Android app configuration file called AndroidManifest.xml, it built 
pieces of abnormal audio and video data for testing Activities. The tool is equipped with a 
dynamic crash monitoring module that is capable of detecting Activity crashes and native code 
crashes. DroidFuzzer uncovered bugs such as consumption of resources, ANR (Android Not 
Responding), and crashes from not dealing with malformed audio and video files well, rather 
than bugs resulting from Intent field missing or incorrect types of Intent field values.  

IntentFuzzer [5] combined a static analysis with random fuzzing to dynamically test 
Android apps. A path-insensitive and inter-procedural CFG analysis was employed to extract 
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the structure of Intents that each target component expects. The analysis traverses Dalvik 
bytecode instructions to collect calls to Intent's getter/setter methods and calls to their bundle 
objects, starting from each component's entry point (e.g., onCreate method for Activity). The 
majority of the calls use a specific string key to extract extra data from Intents whereas data 
type itself is encoded in the name of the methods. This research also attempted to use 
Flowdroid [10] for static analysis on more precise Intent structure, but it reported that the 
simple CFG-based analysis mentioned previously is enough for Intent fuzz testing in terms of 
scalability and precision [5]. A set of Intents was generated afterward with the statically 
analyzed Intent structure information, target components were executed with these fuzzed 
Intents, and both code coverage and crashes due to exceptions were monitored. This research 
thus contrasts to the two previous researches [3][4] where static analysis is merely the 
extraction of Intent structure information from the Android manifest information file.  

IntentDroid [6] addressed eight kinds of vulnerabilities in Activity (and Fragment) due to 
Intent-based component communication, including Java crash, Fragment injection, UI 
spoofing, and Cross-application scripting (XAS). The purpose of using this tool was not only 
to detect Java crash as JJB, DroidFuzzer, and IntentFuzzer had aimed at, but it was also to 
discover other kinds of vulnerable Android apps. For example, it detected vulnerable Android 
apps injecting JavaScript code into HTML-based UI to access sensitive information and to 
spoof UI to trigger phishing attacks. It featured high coverage with low overhead by 
monitoring some selected set of Android platform APIs (responsible for security-relevant 
functionality as well as access to Intent fields) and by utilizing the monitored information to 
guide testing.  

ICCFuzzer [7] is another interesting tool to uncover crashes by Null reference exception, 
Intent spoofing, Intent hijacking, and data leak by path-insensitive interprocedural CFG static 
analysis. It was applied to Android apps from DroidBench 
(https://github.com/secure-software-engineering/DroidBench) and Google Play, and the 
number of vulnerabilities detected with this tool was compared with those by IntentFuzzer [5] 
and Null IntentFuzzer [2]. 

Besides Intent vulnerability associated with the robustness of Android apps, there have been 
researches on Intent vulnerability associated with security and privacy issues such as personal 
data loss, phishing, and other unexpected bad behavior. For example, Kun Yang et al’s Intent 
fuzzer [11] showed a dynamic Intent fuzzing mechanism to uncover violations of permission 
model for Activity and Service.  

3. Motivation: Intent Vulnerability 
An Android program generally forms a Java program with APIs in Android platform. Using 
the APIs, one can build user interfaces to make a phone call, play a game, and so on. An 
Android program consists of components such as Activity, Service, Broadcast Receiver, or 
Content Provider. Activity is a foreground process equipped with windows such as buttons 
and text inputs. Service is responsible for controlling background jobs, and so it has no user 
interface. Broadcast Receiver reacts to system-wide events such as notifying low power 
battery or SMS arrival. Content Provider is an interface of various kinds of storage including 
mobile database systems.  

Components in an Android program interact with each other by sending messages called 
Intent in Android platform. An Intent holds information about a target component to which it 
will be delivered, and it may hold data together. For example, a user interface screen provided 
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by an Activity changes to another by sending an Intent to Android platform, which will launch 
a new screen displayed by a target Activity specified in the Intent.  

The use of Intent is advantageous for reuse of Android components by making them be 
loosely coupled with others. For example, Android platform provides popular mobile services 
such as making a phone call, sending an SMS, and using a web browser by Activity 
components, and many Android apps easily make use of them just by sending some Intent to 
the platform. Programmers deal with Android components outside an Android app in the same 
manner as they do with those inside the Android app.  

However, many misuses of Intent have been reported to cause Android apps crash, called 
Intent vulnerability, in [2][3][4][5][6][7]. The misuses of Intent are typically due to malformed 
Intent examples with NULL action, invalid actions, missing extra data, and ill-typed extra data, 
as discussed in the introduction.  

Although the problem of Intent vulnerability is serious, there is no good mechanism yet to 
verify the well-formedness of Intents and to issue a warning for Intent vulnerability in Android 
apps. Programmers should find out the causes of Intent vulnerability in Android apps with 
much efforts. Unfortunately, Android programmers write a piece of code for component 
activation by Intent in the form difficult to uncover the potential Intent vulnerability. For 
example, to invoke Note Activity component in Fig. 1, they write as follows:  

 
Intent i = new Intent(); 
i.setTarget("com.example.android.Note"); 
i.setAction("android.intent.action.EDIT"); 
i.setExtraString("title", "... my title ..."); 
i.setExtraString("content", "... my content ..."); 

startActivity(i); 
 
where an action name, arguments, and argument types are scattered over several statements 
and so it is not so easy to verify correctly the validity of the whole of an Intent to invoke Note 
Activity. Another reason of difficulty comes from implicit Intent with no target component 
specified so that one can verify validity of implicit Intents only after a target component for the 
Intents is determined. As a result, Intent vulnerability in the code remains silent in 
compile-time, and then it arises in runtime, making it difficult to identify misuses of any 
Intents in Android apps early. This is a serious problem of the Android ICC (Inter-component 
communication) design.  

We therefore approach this problem of Intent vulnerability by Intent fuzzing based testing, 
which dynamically executes Intents to see if Intent vulnerability is exposed. 

4. The Intent Specification Language 
Before we explain our Intent fuzz testing tool, this section introduces a specification language 
for describing the structure of Android Intent as shown in Fig. 2. Let us begin with an example 
of Intent specification for the structure of Intents that Note Activity in Fig. 1 is supposed to 
receive, written in the proposed language, as follows: 
 

{ cmp = Activity com.example.android/.Note 
act = android.intent.action.EDIT 

[ title = String, content = String ] } 
|| { cmp = Activity com.example.android/.Note 

act = android.intent.action.INSERT } 
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An Intent specification is a sequence of fields surrounded by { and }, and it can be 
composed by a disjunction (||) of two Intent specifications as in the example above. A 
sequence of fields denotes a set of Intents satisfying the description of the fields. In the first 
sequence of the example, cmp is a field name for a target Activity component, 
com.example.android.Note class, and act is bound to an action (name), 
“android.intent.action.EDIT”. Fields for extra data to perform an action with are surrounded 
by [ and ], and each extra data field describes a key and an associated type information, such as 
title and String. The second sequence of fields in the example denotes another set of Intents 
similarly but posing no constraints on other than those for cmp and act. By interpreting || as the 
set union, the example of Intent specification denotes the union of the two sets of Intents. 
Every Intent specification can thus be regarded as a predicate that defines a set of Intents.  

Note that every instance of Intent can be neatly presented by a special form of Intent 
specification. We call it a ground Intent specification. Every field in a ground Intent 
specification is assigned a value, and there is no field that declares only types. A ground Intent 
specification is interpreted as a single Intent only with the specified fields and with no extra 
fields. A particular test case of Intent for our fuzz testing is described by this form of ground 
Intent specification: 
 
{ cmp = Activity com.example.android/.Note 

act = android.intent.action.EDIT  
[ title = String "my title",  

content = String "your content" ] 
dat = URI http://our.uri.com } 

 
The full detail of the Intent specification language is shown in  . We design the Intent 

specification language by modeling the structure of Intent class in Android platform. An Intent 
specification includes a target component (cmp), an action (act), data (dat), a type (typ), and a 
list of extra data (each of which is a tuple of a key, a type of a value,  and an optional value). 
For an exposition on category and flag, readers may refer to the developer's document 
available in [1]. 
 

INTENTSPEC ::= { FIELD FIELD ... FIELD } | { FIELD FIELD ... FIELD } || INTENTSPEC 
FIELD ::= COMPONENT | ACTION | DATA | EXTRA | CATEGORY | TYPE | FLAG | INTERNAL  
 
COMPONENT ::= cmp = COMPTYPE COMPNAME 
COMPTYPE  ::= Activity | Service | BroadcastReceiver | ContentProvider  
COMPNAME  ::= ID / (ID | .ID) 
ACTION    ::= act = ID 
DATA      ::= dat = URI 
EXTRA     ::= [ ID=EXTRAVALUE , ... , ID=EXTRAVALUE ] 
CATEGORY  ::= cat = [ ID , ... , ID ] 
TYPE      ::= typ = URI 
FLAG      ::= flg= [ ID , ... , ID ] 
INTERNAL  ::= internal = BOOL 
 
EXTRAVALUE ::= String STRING? | boolean BOOL? | int INT? 

| long LONG? | float FLOAT? | uri URI? | component COMPNAME? 
| int[] INTARRAY? | long[] LONGARRAY? | float[] FLOATARRAY? 

 
INTARRAY   ::= INT , ... , INT  
LONGARRAY  ::= LONG , ... , LONG 
FLOATARRAY ::= FLOAT , ... , FLOAT 
 
LETTER ::= (A - Z | a - z)+ 
ID     ::= LETTER (A - Z | a - z | 0 - 9 | _ | . | $)* 
URI    ::= LETTER (A - Z | a - z | 0 - 9 | _ | . | / | : | * | ? | @ )* 
 
(BOOL, INT, LONG, FLOAT, and STRING denote the corresponding primitive values.) 

Fig. 2. The Intent Specification Language 
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The proposed language extends the structural information of Intent with the disjunction of 

field sequences (||) to express many alternative forms of Intents for testing. It also specifies 
component type information (COMPTYPE) such as Activity because the ways of testing vary 
depending on the component types. It allows us to describe a field type information such as 
integer, string, arrays, Uris (URI) and so on. It can specify concrete values for the field as well. 
 

 
Fig. 3. Decoupling Generators from Executors by Intent Specification Language 

 
The Intent specification language allows a modular structure of Intent fuzzing tool by 

decoupling generators of Intent test cases from the associated executors. It becomes very 
flexible to combine a generator with an executor in many ways, as depicted in Fig. 3. This 
structure enables a machine to generate automatically specifications for Intent-based Android 
component communication, or it offers a way of writing them manually to a human such as 
SQA testers and developers.  

The automatic generation of Intent specification can make use of static analysis and 
dynamic analysis with random generation.  Some static analysis discovers the potential 
structure of Intents communicated among components in an Android app [5][7], and some 
dynamic analysis monitors the execution of the Android components to capture the usage of 
values in Intents [6]. A random generation strategy can be employed to fill in insufficient 
information in the generated Intent specifications.  

SQA testers or developers can write Intent specifications manually based on their domain 
knowledge on what Intents a target Android component expects to take. For example, design 
documentations for Android projects can offer such domain knowledge.  

As well as the generator side, the Intent specification language enriches the executor side. 
Given a (ground) Intent specification, no matter what generator is involved in generating the 
specification, one can choose an executor option for one's own purpose. Every ground Intent 
specification is directly mapped onto ADB (Android Debug Bridge) commands or a 
JUnit-based Android test suite, both of which are immediately executable for Intent fuzz 
testing.  

Our Intent fuzzing tool offers all combinations of automatic and manual generation of Intent 
test cases with two executors using ADB commands and JUnit-based test suite, as described in 
Fig. 3. A detailed usage of our tool for manual writing Intent specification and for generating 
and executing JUnit-based test suite can be found in a companion web site [9]. In the following 
section, we will focus on a combination of automatic generation and ADB command based 
execution.   
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5. A Flexible Intent Fuzzing Tool with an Automatic Tally of Failures 
Fig. 4 describes the structure of a fully automatic Intent fuzz testing tool starting with 
installation of each APK file on mobile phone and finishing with removing it. The tool runs on 
a desktop PC and is connected to an Android mobile phone for executing testing Android apps 
via ADB (Android Debug Bridge) interface provided by Android SDK [1]. The three main 
steps between installation and uninstallation of an APK file are as follows. First, this tool 
automatically constructs Intent specifications from the component configuration of the input 
APK file. Second, it maps them onto ADB commands to execute on the installed Android app, 
and it receives the test execution logs via another Android SDK tool called logcat [1]. Third, it 
automatically filters the duplicates of the logs out to write a report in Microsoft Excel format 
for review. We will explain each step in the following sections. 

 
Fig. 4. The Architecture of Our Intent Fuzzer 

5.1 Generating Intent Test Cases 
The procedure of Intent test case generation takes a given APK file and generates ground 

Intent specifications by two steps. First, we identify target Android components and associated 
Intent specifications for testing from the component configuration information in the APK file. 
Second, we apply a fuzzing strategy to transform the generated Intent specifications into 
ground ones. 

5.1.1 Automatic Construction of Intent Specifications 
To explain this procedure, one needs to understand the component configuration of an APK 

file in detail. APK is a ZIP format file holding a configuration file called AndroidManifest.xml, 
a binary executable (named classes.dex), and resource files such as bitmap images. In the 
configuration file, a list of Android components in the APK is included. Each declaration of an 
Android component tells a Java class name of the component. The declaration also provides 
information on Intents to activate the component with. This information is called Intent filter. 
Android platform makes use of this class name and Intent filters to determine which Android 
component to activate. When an Intent holds a Java class name for a target Android 
component, it is called explicit Intent. Android platform attempts to pass every explicit Intent 
to the specified component unconditionally. When an Intent does not specify any target name 
of Android component, it is said to be implicit. Every implicit Intent is passed to an Android 
component only when it is matched with the Intent filter of the component. Android platform 
thus makes use of Intent filters to find a target Android component on a given implicit Intent. 
Therefore, Intent filter declarations in the component configuration file can be used to 
construct a skeleton of Intent specification automatically. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018                     4257 

<manifest ... package="com.example.android" ...> 
<application ...> 
<activity android:name="com.example.android.Note"> 
<intent-filter> 
<action android:name="android.intent.action.INSERT"/> 
<action android:name="android.intent.action.EDIT"/> 
... 

</intent-filter> 
</activity> 
... 

</application> 
</manifest> 

Fig. 5. An Example of AndroidManifest.xml 
 

In this procedure, our Intent fuzzing tool decompresses a given APK file to retrieve a list of 
Android component declarations from the configuration file, collecting Intent filters for each 
Android component declaration. Then the tool uses the filter information to generate minimal 
Intent specifications. For example, an APK file with Note Activity in the example of Fig. 1 has 
a configuration file as shown in Fig. 5. One of the declared components in the configuration 
file is Note Activity, and the Intent filter enumerates two action names, INSERT and EDIT. 

Then our tool constructs an Intent specification from Intent filter information in Android 
component declarations retrieved from the APK file. For example, from the example 
configuration file, it constructs: 

 
{ cmp = Activity com.example.android/.Note  

act = android.intent.action.EDIT } 
|| { cmp = Activity com.example.android/.Note  

act = android.intent.action.INSERT } 
 

No Android configuration file declares key names and types for extra fields of Intents such 
as title and String, and so the Intent specification constructed above is missing this information. 
There are a few ways to fill in the extra field part of Intent specification. For example, one can 
perform static or dynamic analysis to extract such extra field information from a target 
Android app automatically, and one can make use of one's domain knowledge on a target 
Android app to write it manually. 

5.1.2 A Fuzzing Strategy for Generating Ground Intent Specification 
Once an Intent specification is constructed for each Android component, what our tool does 

next is to generate ground Intent specifications that represent executable Intent test cases such 
as ADB commands or JUnit-based test suite. In the following, we will discuss a fuzzing 
strategy for refining given Intent specifications in order to generate ground ones, which can be 
immediately mapped into executable Intent test cases. Thus the Intent specification language 
connects Intent test case generators to the executors of Intent test cases smoothly with a 
fuzzing strategy. 

 We design a fuzzing strategy by observing the characteristics of how an Android 
component handles incoming Intents. According to our experience, most of Android 
components start with a series of conditional statements branching according to the action 
name of an incoming Intent, as shown in Fig. 1. Then most of instances of Intent vulnerability 
are likely to be either in the body of each conditional statement that runs when some of 
matching action is found, or the body of the “else” part that runs when no action is matched.  

Our fuzzing strategy is to generate ground Intent specifications either compatible or 
incompatible to a given Intent specification. A ground Intent specification is compatible to an 
Intent specification if it has fields described by the given Intent specification optionally having 
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more fields. A compatible ground Intent specification is interpreted as one of Intents that the 
given Intent specification denotes. For example, the former disjunct with EDIT action in the 
previous example of Intent specification can be refined into: 

 
{ cmp = Activity com.example.android/.Note 

act = android.intent.action.EDIT  
[ RzUrx7 = boolean True ,  

HR7Ja6d7 = String AHMlyG0z3jjErO ] 
dat = URI qoFXwARtpfV-LNN } 

 
where extra data with two random keys RzUrx7 and HR7Ja6d7 are introduced with one 
random boolean value and the other random string. Also, an extra Intent data field (dat) is 
created with some malformed URI. 

An incompatible ground Intent specifications is either a field-structure-preserving one or a 
random one. A field-structure preserving ground Intent specification shares the skeleton of a 
given Intent specification. For example, if the given Intent specification has an action, it has 
some action too. But the action name is not necessarily the same as described in the given 
specification. It can have new extra fields as well. For example,  the former disjunct with EDIT 
action in the previous example of Intent specification can lead to: 

 
{ cmp = Activity com.example.android/.Note 

    act = android.intent.action.ADD  
           [ key2 = int[] -1233387, -72316,  
             dKQn = String xZQbcCTOW] 
    typ = video/* } 

 
where the action name becomes different and new extra data are introduced with type (typ). 

The other kind of incompatible ground Intent specification is a randomly generated one. As 
the name stands for, a random ground Intent specification can have arbitrary fields and values 
only preserving the cmp field which holds a target component name. For example, 

 
{ cmp = Activity com.example.android/.Note 

    dat = tel:123  
    cat = [ ttoIjEWJnpk, vYQEpERvvb, xpWj_Q, 
            android.intent.category.APP_CALENDAR] } 
 
where the field of action with EDIT disappears. It has an Intent data (dat) with a telephone 
number, and it has a category (cat) associated with a random array value.  

Compatible ground Intent specifications will attempt to detect any inappropriate handling of 
malformed Intents inside the body of the conditional statement for each known action in an 
Android component. With incompatible ground Intent specifications, we anticipate an 
encounter with such an Intent vulnerability inside the body of the “else” part or inside the body 
of the conditional statement for some unknown action. Later, we will see that our strategy is 
good enough to uncover many instances of Intent vulnerability in evaluation with real-world 
Android apps. 

5.2 Executing Intent Test Cases via ADB Commands 
One form of Intent executors in our tool is the ADB interface with ADB commands into 

which we transform ground Intent specifications. Three ADB commands are transformed 
from one compatible and two incompatible ground Intent specifications explained in the 
previous section, as follows: 
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adb shell am start -n com.example.android/.Note  

    -a android.intent.action.EDIT  
    --ez RxUrx7 True 
    --es HR7Ja6d7 AHMlyG0z3jjErO 
    -d qoFXwARtpfV-LNN 
 
  adb shell am start -n com.example.android/.Note  
    -a android.intent.action.ADD  
    --eia key2 -1233387, -72316  
    --es dKQn "xZQbcCTOW"  
    -t video/* 
 
  adb shell am start -n com.example.android/.Note  
    -d tel:123  
    -c ttoIjEWJnpk, vYQEpERvvb, xpWj_Q, android.intent.category.APP_CALENDAR 
 

The transformation is straightforward. According to the syntax of ADB commands [1], the 
prefix “adb shell am start” directs Android platform to launch some Activity named by the 
option -n. The option -a is for action name, --ez is for extra boolean, --es is for extra string data, 
--eia is for integer array, -d is for URI to some data, -t is for the type of the data that the URI 
points to, and -c is for category.  

Once a set of ADB commands is ready for each associated Android component in an 
Android app, we repeat the following procedure with each ADB command in sequence. Our 
tool clears any previously running instance of a target Android app, for example, by “adb shell 
am force-stop” with the package name of the application. It executes an ADB command to 
launch an Android component in a target app and to give the component an Intent designated 
in the command. It waits a period of time collecting Android logs flowing from running the 
Android app via logcat in the ADB interface. It analyzes the collected logs to decide if the 
Android component gets terminated abnormally or not by finding in the logs some textual 
patterns to be explained below. It writes all Android logs and the analysis result in a result file. 

The textual patterns that our tool uses to judge a failure from Android logs are 
“ActivityManager: Force finishing activity”, “AndroidRuntime: Shutting down VM”, and 
“ActivityManager: Process pid **** has died” for Activity, Service, and Broadcast Receiver 
component types, respectiveldy. 

Our tool is designed to write all Android logs and the analysis result in a Microsoft Excel 
file as shown in Fig. 6. Using MS Excel format turns out to be very useful because it allows us 
to highlight occurrences of failures in red color and to review a very large amount of logs 
easily through MS Excel program without developing any viewer. 
 

 
Fig. 6. An Example of Failure Logs in Microsoft Excel 

 
According to our experience with our tool, running too many Intent test cases by ADB 

commands is sometimes found to get the ADB interface unstable, and so one might not be able 
to continue to get any Android logs further. This will prevent us from running our tool over a 
large number of Android apps in practice. To overcome this difficulty, we design our ADB 
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executor to take about five seconds in each run. This delay is required to test one Intent test 
case after another without any interference between two subsequent tests, according to our 
experience. In addition, we build a simple watch dog program to monitor the status of the ADB 
interface and to reboot the Android mobile phone whenever the watch dog program sees some 
blocked state with no progress. Some detail on this will be explained later in discussion. This 
auxiliary mechanism allows us to have finished our experiment with 50 real-world Android 
apps in a batch run of our tool successfully without stopping in the middle. 

5.3 Automatically Reporting Failures Without Duplication 
A naive way of reporting failures in Android logs by the ADB command executor turns out 

to be not so effective  because it can report many occurrences of the same failure happening in 
the same program point and throwing the same runtime exception. According to our 
experiment to be shown later, 77% of the total number of failures have appeared again, and so 
the ratio of unique failures is only about 23%. Since the fuzz testing is very likely to produce 
many same failures, it will demand much efforts in classifying different failures. Hence, it is 
required to classify failures into sets of the similar failures automatically for reduction of such 
efforts in the post-classification. 

Our tool employs a procedure of grouping similar failure logs shown in Algorithm 1. The 
input is a list of failure logs obtained from the fuzz testing on an Android component, and the 
output is a set of index sets, of which each index set tells occurrences of a unique failure. 

 

 
Algorithm 1. Classifying Failure Logs 

 
The procedure is based on the longest common subsequence (LCS) algorithm ComputeLCS 

[8]. For example, given two input sequences ABCBDAB and BDCABA, it finds BCA and 
BDA for length three LCS, BCBA and BDAB for length four LCS, and nothing for length five 
LCS. Therefore, it eventually outputs the two sequences of length-four LCS. Note that LCS is 
not necessarily contiguous in the two sequences.  

In the LCS algorithm, each failure log such as one shown in Fig. 6 is converted to a 
character sequence obtained by concatenating rows in the log before the algorithm is applied. 

Our algorithm initially lets each failure log have an index set to itself. For each pair of two 
failure logs indexed by i and j in the input list, the algorithm computes the longest common 
subsequence lcs, and then it computes a similarity between the two failure logs by the ratio of 
lcs to the longer failure log. Whenever a similarity number is high, the algorithm regards the 
two failure logs as the same one, merging the two index sets of the failure logs. We use 99% as 
the level of similarity to judge that the two logs hold the same failure, merging the associated 
index sets into one. The reason that the highest level (100%) is not used is that we want to 
allow some minor differences such as thread IDs that are numbered differently per each run. 
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Due to the nature of fuzz testing, the existing Intent fuzzing tools must produce many 
duplicate failures as well. The proposed classification algorithm could be also applied together 
with the tools to reduce efforts on classifying duplicate failures manually. 

6. Evaluation 
We present an experimental result on applying our Intent fuzzing tool to 50 popular Android 

apps downloaded from Google Play where no source code is provided. The Android apps are 
Facebook, Instagram, Kakao Talk, Naver, CGV, and so on. The detailed information about 
Android app names, versions and DEX binary code sizes are available in [9]. 

The source code of our tool, all Android APK files used in the experiment, and the result 
data are also available in our companion web site [9]. 

6.1 Failure Counts Due to Intent Vulnerability 
First, our experiment strongly supports that the problem of Intent vulnerability on Android 

apps is serious: the two third of Android apps on the experiment experienced abnormal crashes 
due to Intent vulnerability. Our Intent fuzzing tool discovered total 409 different failures due 
to Intent vulnerability over 50 Android apps as shown in Fig. 7. On average, it is eight failures 
per Android app.  
 

 
Fig. 7. The Number of Discovered Failures Due to Intent Vulnerability 

 
Second, the ratio of failure counts over binary code sizes is found to be a simple and 

effective criterion to classify robust and weak Android apps in terms of Intent vulnerability. 
Fig. 8 shows the analysis result: the increasing rate of the number of failures is roughly 70% of 
the increasing rate of the sizes of Android apps according to the simple linear regression 
analysis. We measured the size of Android apps in DEX binaries.  
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Fig. 8. Identifying Robust/Weak Android apps by the Ratio of # of Failures and Binary Sizes 

 
 

The seven Android apps above the dotted linear line in Fig. 8 are weak ones based on the 
ratio of failure counts over Android binary code sizes. Actually, they are the top seven 
Android apps in terms of the number of discovered failures as shown in Fig. 7. Interestingly, 
they are all developed by the domestic companies, and it remains to see if there is any good 
reason for the weakness of domestic Android apps.  

The three big Android apps located below the dotted linear line are very robust ones: 
4shared (7 failures/23.67MB), Band (10 failures/18.87MB), and Twitter (no 
failures/18.41MB). 

 

6.2 Automatic Classification of Failures in Android Logs 
Our tool is very effective in classifying duplicate failures from Android logs, judging from 

the ratio of the number of failure groups to that of all failures as shown by Fig. 9. It found 79.2% 
of all failures in a single Android app reappear on average, and so it successfully excluded 
much efforts on further examination. For example, HanaMembers shows the best performance 
by merging 71 failures into only two groups of duplicate failures, and we have only to examine 
2.8% of all the failures for further analysis.  

Fig. 9 enumerates only thirty Android apps where the tool discovered at least one failure of 
Intent vulnerability. For the twenty-four Android apps (80%) from 4Shared (7th entry of the 
graph in Fig. 9) to HanaMembers, our tool successfully removed duplicate failures more than 
a half of all (with the ratio below 50%) where we clearly see the effectiveness of the proposed 
automatic classification method. 

When we look at the rest six Android apps (20%) with the ratio above 50%, the first four 
Android apps Facebook (3 failures with 3 groups), YonseWonjuApp (1 failure with 1 group), 
DaumMap (1 failure with 1 group), CleanMaster (5 failures with 4 groups), and the sixth 
Android app, Instagram (8 failures with 5 groups) have failure counts below the average so 
that the high ratio of the number of failure groups to that of all failures does not make sense 
much. 
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Fig. 9. Ratio of the number of failure groups to that of all failures 

 
Only the fifth Android app, Auction, with 76 failures identified into twelve groups worth a 

further analysis. The grouping result is G0={0,1,2,3,4,5,6,8,11,12,13,18,20}, 
G1={7,9,10,14,15,16,17,19,21,22}, G2={23}, G3={24}, ..., G54={75}. The Android log #0 
consists of 41 lines and about 9 Kbytes characters while the log #23 and the log #24 consist of 
688 lines and about 140 Kbytes characters and 430 lines and about 100 Kbytes characters, 
respectively. The logs from #23 to #75 in Auction are extraordinarily large when the sizes are 
compared with the size of logs from the other Android apps. For example, the Android log #0 
of Facebook consists of 67 lines and 13 Kbytes characters. In the case of the Android logs #23 
and #24 of Auction, we confirm that they are different from each other by inspection. However, 
it could be more likely to miss detecting duplicates as Android logs are large: the same lines in 
the duplicates may appear in different order. The failure classification method could be 
improved in this respect by more discerning method such as machine learning algorithms. 

 

6.3 Execution Time for Intent Fuzz Testing 
We evaluated our tool in terms of the execution time for Intent fuzz testing, which have 

been rarely discussed by the existing researches. First, the execution time for Intent fuzz 
testing on a single Android app is proportional to the number of Intent test cases (i.e., ADB 
commands) used for the testing, and it is not affected so much by the time for classifying 
failures using LCS algorithm in general, which will be justified by the following results.  

Fig. 10 shows the execution time for Intent fuzz testing, which is the time for running Intent 
test cases plus the time for grouping. Testing all fifty Android apps took 570,255 
(545,617+24,637) seconds for running Intent test cases and grouping. On average, it took 3.17 
hours for testing a single Android app. Only 14 Android apps took less than an hour, and the 
rest took more than that.  
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Fig. 10. Time for Intent Fuzz Testing 

 
The time for Intent fuzz testing on a single Android app is found to be proportional to the 

number of Intent test cases. Table 1 tells us that for the fifty Android apps, our tool 
automatically constructed 3,408 Intent specifications (68.2 per an Android app on average) by 
the method explained previously. The full detail of the table is available in [9]. The Intent 
specifications expanded to 102,240 Intent test cases (ground Intent specifications) by 
generating 30 Intent test cases per each Intent specification. We tested 2,045 Intent test cases 
over a single Android app on average, and each Intent test case required about 5 seconds due to 
the reason explained in Section 5.2. Based on the figures, we can estimate the time for testing 
a single Android app, which is 2.84 hours (=2,045 x 5 / 3,600), which is quite close to the time 
(3.17 hours) obtained from the experiment. 

 
Table 1. An Experiment Result for Intent Vulnerability 

 # of Intent Specs # of Intents # of Failures # of Groups (# of Unique Failures) 
Total 3,408 102,240 1,797 409 

 
The time for grouping similar failures is small when compared with the time took for the 

pure testing time. It took 4.3% of the time for running Intent test cases on average. However, it 
sometimes happened that the time for grouping grows extraordinarily. According to Fig. 10, 
Auction took more time for grouping failures than that for running Intent test cases, and 
HappyPoint took longer time for grouping failures than the other Android apps (except 
Auction) did. The reason is that the length of the failure logs was relatively long and the 
number of the failure log groups was large. In such an exceptional case, the time for 
classifying failures does not depend on the number of Intent test cases any more.  

Second, our Intent fuzz testing tool itself is robust to run fully automatically, which is 
important in practice particularly when it is applied to many Android apps by batch processing. 
This allowed us to evaluate the total execution time for Intent fuzz testing on all fifty Android 
apps. Such measurement of execution time for testing Intent vulnerability has never been 
reported before. For the fifty Android apps, our tool ran 7.1 days without human intervention 
until it finished Intent fuzz testing on them. For this to work successfully, we employed a 
monitoring mechanism of the tool that detected a blocked state of running an Android app and 
rebooted the mobile phone to restart testing the app. Testing 14 of the 50 Android apps 
experienced such a reboot of the mobile phone. A finding on the unstable status of Android 
apps during fuzz testing was reported in other research [3] as well, but no countermeasure was 
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discussed except human intervention.  
In summary, this testing time analysis suggests that some consideration should be taken for 

efficiency of Intent fuzz testing.  

6.4 Root Cause Analysis on Intent Vulnerability 
This section reports a root cause analysis on failures due to Intent vulnerability found by our 

experiment. Despite the nature of randomness in Intent fuzz testing, our tool discovered an 
interesting failure that the other researches had not reported before.  

Table 2 shows a summary of statistics on kinds of exceptions due to Intent vulnerability 
discovered by our Intent fuzz testing tool on the fifty Android app. 

 
Table 2. A Statistics on Exceptions Causing Intent Vulnerability 

 
 
The most frequent root cause of Intent vulnerability was the Null pointer reference 

exception. A close examination on the failure logs with this exception tells that some missing 
field in an Intent test case caused raising the exception. For example, in the following line 
excerpted from a failure log on Auction, some Uri expected for the data field of an Intent test 
case is missing, resulting in the exception. 

 
 Caused by: java.lang.NullPointerException: 
 Attempt to invoke virtual method ‘java.lang.String android.net.Uri.getScheme()’ on 
a null object reference 
 

The ClassNotFound exception, which is found only on Naver, revealed a serious mismatch 
between the package name of a class and its declaration on AndroidManifest.xml. One of the 
associated failure logs was as follow: 

 
 Caused by: java.lang.ClassNotFoundException: 
 Didn't find class “com.nhn.android.search.ui.picturerecognition. 
BarcodeRecognitionActivity” ... 
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where the mentioned class BarcodeRecognitionActivity was found in differently named 
package com.nhn.android.search.ui.recognition. But the wrong package name was declared in 
the AndroidManifest.xml of the Android app, and so it was legal to attempt to invoke 
BarcodeRecognitionActivity with this wrong package name. This was an example of invalid 
configuration of an Android app. Such a misconfiguration does not cause any problem in 
compile-time, but it can cause a runtime exception. 

Many of the NumberFormat exceptions, which are also found only on Naver, were caused 
by some extra field set with values of types different from integer. To prevent this exception, 
validity of values from Intents should be verified before the values are retrieved from Intents. 

 
 Caused by: java.lang.NumberFormatException: Invalid int: “UijJLfrRYfATQmd” 
 at java.lang.Integer.invalidInt(Integer.java:138) 
 at java.lang.Integer.parse(Integer.java:410) 

 
The UnsupportedOperation exception was seen on those Intent test cases with some invalid 

Uri. When it comes to an excerpt from the following failure log, we tested with a Uri “tel:xxx” 
where there is no query part. Values such as a Uri have some structure which makes the 
validity check more difficult than primitive values such as Integer.  

 
 Caused by: java.lang.UnsupportedOperationException: This isn't a hierarchical URI. 
 at android.net.Uri.getQueryParameter(Uri.java:1665) 
 

Although it is rare, IllegalArgument exception was found to be thrown. The associated 
method was accessible because it was declared as public. However, according to the 
documentation in Android source code by Google, it is intended that the method is internally 
used. Without further information on the relevant Android apps, it was not easy to figure out 
the execution path leading to an invocation of such an internal class API.  

 
 Caused by: java.lang.IllegalArgumentException: 
 Expected com.google.inject.internal.util.FinalizableReference. 
 at com.google.inject.internal.util.$Finalizer.startFinalizer(Finalizer.java:77) 

 
For the second entry in Table 2, the relevant failure logs showed few clue for us to decipher 

the causes of Intent vulnerability partly because there was no source available for Android 
binary apps for the experiment. 

7. Discussion 

7.1 Comparison with Existing Intent Fuzzing Tools for Detecting Crashes 
In Table 3, we compare our Intent fuzzing tool, named Hwacha [9], with the existing tools 

for detecting crashes due to Intent vulnerability [2][3][4][5][6][7]. First, an Intent fuzzing tool 
had better have a flexible way of Intent test case generation to take information on Intent 
structure from various sources. 
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Table 3. Comparison with the Existing Intent Fuzzing Tools 

 
 
This table explains that all Intent fuzzing tools are based on random generation for Intent 

test cases. Except Null IntentFuzzer [2], all the tools make use of information from Intent 
Filter declared in AndroidManifest.xml for Activity, Service, and Broadcast Receiver. 
DroidFuzzer [4] confines itself to testing Activity using Uri data pointing to fuzzed audio and 
video contents, which is different when it is compared with JJB [3] focusing more on missing 
actions, malformed extra data and so on. A mark * in the table tells this difference. Both 
IntentFuzzer [5] and ICCFuzzer [7] have used FlowDroid [10] for backend of their own static 
analyzer, for example, to collect keys and types of extra data of Intent statically. ICCFuzzer [7] 
went one step more to collect event handler information in Activity and Service components 
potentially to trigger deeper execution of target Android components, which a mark † points 
out. IntentDroid [6] is the only tool to be based on dynamic analysis to collect information on 
Intent structure such as keys and types of extra data of Intent.  

Hwacha offers a flexible mechanism to get Intent structure information written in the Intent 
specification language. It is true that the Intent structure information obtained static and 
dynamic analyses in IntentFuzzer [5], IntentDroid [6], and ICCFuzzer [7] can be 
straightforwardly written to Intent specifications. To point out this reason, we have two marks 
‡ in the static and dynamic analysis columns, and therefore Hwacha has Y in the Generic 
Provision column of the table. Hwacha is the only Intent fuzzing tool providing this capability. 

Second, an Intent fuzzing tool should be fully automatic in executing testing particularly 
when it is applied to batch processing over many Android apps. There are a few considerations 
on this automatic procedure. Basically, it had better have a facility for automatic installation 
and uninstallation of each Android app before and after executing testing. During the 
execution of testing, it is also required to have a mechanism to detect crashes automatically, 
for example, as is explained in Section 5.2. DroidFuzzer [4], IntentDroid [6], and ICCFuzzer 
[7] have mentioned how crashes are detected automatically, though there have not been so 
much details. In addition, the execution of testing should be performed reliably. We have 
experienced that Android apps often get stuck when too many Intent test cases are executed for 
testing.  Hwacha is equipped with a kind of watch dog to monitor the running of Android apps 
by measuring the running time. If an Android app runs too long, the watch dog mechanism 
kills it and runs it again. It repeats 10 times, and if it still has some problem, it reboots the 
Android phone. According to our experience, a single rebooting is enough to make progress in 
case of getting stuck, resolving the problem.  

The presence of a fully automatic tool immediately allows one to measure execution time 
for Intent fuzz testing, which is important in practice. The execution time has been rarely 
reported before. The only research work on IntentDroid presented very rough numbers as: it 
took three weeks to finish their testing over 80 Android apps, and it took several hours for each 
Android app on average [6].  

Third, there is no previous work on attempting to removing duplicate failures in Intent fuzz 
testing. Due to the nature of fuzz testing, one can try many different Intent test cases resulting 
in the same failure. More duplicate failures we have, more efforts we should make in 
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reviewing the failures. Adopting LCS algorithm is a simple but very effective way to reduce 
the reviewing efforts. We believe that the LCS-based algorithm for removing duplicate 
failures is generally usable in the existing Intent fuzzing tools: all the existing tools produce 
Android logs in the testing, which can be used as input of the algorithm. 

Hwacha has a capability to generate JUnit test code based on Android testing framework as 
well, which is useful for programmers with source code. When an Intent fuzzing tool is 
applied with Android source program, the automatic generation of JUnit test code will be 
helpful for building regression test suite on defects of Intent vulnerability discovered in the 
source program. Android Studio can run the generated JUnit test code. The detail on this 
capability is explained in our companion web site [9]. 

7.2 How to Defend Intent Vulnerabilities Causing Crashes 
The Intent vulnerability of causing Android app crashes is mainly due to the weakness of 

Android ICC design where there are few stringent mechanisms to enforce a contract between a 
sender and a receiver of an Intent. The mutual agreement on the well-formed Intent object is 
not thoroughly checked either statically in compile-time by Java compiler nor dynamically in 
run-time by Android platform.  

The second author of this paper in his master's thesis [12] designed a runtime assertion 
library using Intent specification to describe the structure of incoming well-formed Intents and 
to specify how to handle malformed Intents. 
 
public class Note extends Activity { 
    @IntentSpec( 
      spec="{ act=android.intent.action.EDIT [ title=String, content=String ] } 
            || { act=android.intent.action.INSERT }", 
      exception={ 
        @IntentSpecException( error_code="EXTRA_FIELD_MISSING", 
           process= // Code to initialize the Intent with default extras), 
        @IntentSpecException( error_code="default", 
          process= // Code to finish this activity 
         )}) 
    void onCreate(Bundle savedInstanceState) { 

       // the same code as the body of the onCreate method in Fig. 1 
    } 
    ... 
  } 

 
This example of the runtime assertion library starts from the example of Note Activity in 

Fig. 1. The annotation @IntentSpec is processed to insert an automatically generated assert 
statement on incoming Intents in the beginning of the following method onCreate. The assert 
statement verifies Intents if they comply to the specified Intent specification. When they are 
not compliant to the specification, the assert statement executes one of the specified exception 
handlers chosen by error codes resulting from matching the Intent specification against 
malformed Intents, such as EXTRA_FIELD_MISSING. This shows another usage of the 
Intent specification language for runtime verification of Intents. 

Maji et al [3] suggested two strategies to overcome the weak Android ICC design. First, one 
way to make Intent message format more explicit and therefore possible to capture is to use 
subclasses for Intent instead of a single flat type. Second, another way is to use a domain 
specific language to express the schema of various Intents, similarly as those approaches taken 
with many RPC systems using interface definition languages (IDL).  

Dart & Henson (https://github.com/f2prateek/dart) is a library for Android which uses 
annotation processing to generate code that does direct field reading and assignment of extras 
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of Intents. Jackson (https://github.com/FasterXML/jackson) is a suite of data-processing tools 
for Java to serialize structured data such as XML documents and to do the reverse, checking 
validity. It has been developed for XML representation but could be applied to Intents. 

8. Conclusion 
We have developed a fully automatic Intent fuzzing tool with two new features: a flexible 

structure in combining generators of Intent test cases with arbitrary executors and a 
mechanical method of failure classification. In our evaluation with 50 commercial Android 
apps, our tool uncovered more than 400 unique failures caused by Intent vulnerability, 
including what has never been reported before. The automatic tally method excluded almost 
80% of duplicate failures in all the crash logs, reducing efforts of testers very much in review 
of failures.   

Of the existing Intent fuzz tools, ours is the first practical tool. Because the whole procedure 
of fuzz testing is fully automatic, the tool will be suitable for Android app developers who are 
not much familiar with Android ICC design. Because the tool itself is stable enough for mass 
application with no human intervention, it will be useful for SQA team to test Android apps 
repeatedly, and for marketplace managers to examine a large number of Android apps. 
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