DOI QR코드

DOI QR Code

Predicting Potential Habitat for Hanabusaya Asiatica in the North and South Korean Border Region Using MaxEnt

MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측

  • Received : 2018.04.26
  • Accepted : 2018.10.16
  • Published : 2018.10.31

Abstract

Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were $778km^2$, and the KBA candidate area identified by taking into account existing protected areas was $1,321km^2$. Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.

금강초롱꽃(Hanabusaya asiatica)은 한반도 중동부에서만 제한적으로 분포하는 고유종으로, 분포범위가 좁고 개체수가 적어 서식지를 세계자연보전연맹(IUCN, International Union for Conservation of Nature) 중요 생물다양성 보호지역(key biodiversity areas: KBAs)으로 지정하여 보호할 필요가 있다. 본 연구에서는 maximum entropy(MaxEnt) 모형을 통해 남북한 접경지역 내 금강초롱꽃 자생가능지를 추정하고 이를 바탕으로 KBAs 후보지를 설정하였다. 기계학습(machine learning) 알고리즘의 하나인 MaxEnt 모형은 생물종의 출현지점만 기록한 데이터(presence-only data)로도 생물종 분포를 편향되지 않게 예측할 수 있는 생물종 분포 모형으로, 본 연구의 연구대상지처럼 현장 조사가 어려운 경우 유용한 방법이다. 본 연구에서는 현장 조사를 통해 수집한 38개 금강초롱꽃 출현 위치와 기후, 지형, 식생 등을 측정한 11개 환경변수를 이용하여 MaxEnt 모형을 학습하여 남북한 접경지역의 모든 지점에 대해 금강초롱꽃 출현확률을 추정하였다. MaxEnt 모형 분석 결과, 금강초롱꽃 출현확률이 0.5를 넘어 금강초롱꽃 분포가능지로 분류된 지역은 $778km^2$이었고, 추정된 서식가능지와 기지정된 보호지역 경계를 고려하여 설정한 최종 KBA 후보지는 $1,321km^2$이었다. 또한 11개 환경변수 중 표고와 연평균 강수량, 생장기 평균 강수량, 최한월 평균 기온이 금강초롱꽃 출현확률에 영향을 미쳐, 금강초롱꽃은 고도가 높은 서늘한 지역을 선호하는 것으로 분석되었다. 이와 같은 금강초롱꽃의 분포지 선호도 분석 결과는 KBA 후보지 설정 뿐 아니라 남북한 통일이나 기후변화와 같은 시나리오에 대비한 금강초롱꽃 보존 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Berger, A.L., S.A. Della Pietra and V.J. Della Pietra(1996) A maximum entropy approach to natural language processing. Computational Linguistics 22: 39-71.
  2. Elith, J., S.J. Phillips, T. Hastie, M. Dudík, Y.E. Cheeand C.J. Yates(2011) A statistical explanation of MaxEnt for ecologist. Diversity Distrib. 17: 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  3. Fick, S.E. and R.J. Hijmans(2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.
  4. Huete, A.R.(1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 25: 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
  5. International Union for Conservation of Nature (IUCN)(2016) A Global Standard for the Identification of Key Biodiversity Areas. Gland, Switzerland.
  6. Jang, S.K., K.S. Cheon, J.H. Jeong, Z.S. Kim and K.O. Yoo(2010) Environmental Characteristics and Vegetation of Hanabusaya asiatica Habitats. Kor. J. Hort. Sci. Technol. 28(3): 497-506. (in Korean with English abstract)
  7. Jaynes, E.T.(1957) Information theory and statistical mechanics. Phys. Rev. 106: 620-630. https://doi.org/10.1103/PhysRev.106.620
  8. Jensen, J.R.(2007) Remote Sensing of the Environment: An Earth Resource Perspective (2nd Eds.), Upper Saddle River. USA: Pearson Prentice Hall.
  9. Keysers, D., F.J. Och and H. Ney(2002) Maximum entropy and Gaussian models for image object recognition. In: Van Gool L.(eds) Pattern Recognition. DAGM 2002. Lect. Notes Comput. Sc. 2449, Berlin, Heidelberg: Springer.
  10. Kim, H., Y.-S. Kim and S.-W. Son(2016) Hanabusaya asiatica. The IUCN Red List of Threathened Species 2016. e.T13188466A13189474
  11. Kim, T.G., Y.H. Cho and J.G. Oh(2015) Prediction Model of Pine Forests' Distribution Change according to Climate Change. Korean J. Ecol. Environ. 48(4): 229-237. (in Korean with English abstract) https://doi.org/10.11614/KSL.2015.48.4.229
  12. Korea National Arboretum(2017) Establishing Key Biodiversity Areas around the Korean Demilitarized Zone. 144pp. (in Korean)
  13. Lee, S.-H., H. Jung and J. Choi(2012) Projecting climate change impact on the potential distribution of endemic plants (Megaleranthis saniculifolia) in Korea. J. Korean Env. Res. Tech. 15(3): 75-84. (in Korean with English abstract)
  14. Lee, Y.-H., Y.-J. Oh, S.-H. Hong, C.-S. Na, Y.-E. Na, C.-S. Kim and S.-I. Sohn(2015) Predicting the suitable habitat of invasive alien plant Conyza bonariensis based on climate change scenarios. J. Clim. Change Res. 6(3): 243-248. (in Korean with English abstract) https://doi.org/10.15531/ksccr.2015.6.3.243
  15. Ng, A.Y. and M. Jordan(2001) On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Adv. Neural Inform. Process. Syst. 14: 605-610.
  16. Park, H.-C., J.-C. Lim, J.-H. Lee and G.-G. Lee(2017) Predicting the potential distributions of invasive species using the Landsat imagery and Maxent: focused on "Ambrosia trifida L. var. trifida" in Korean Demilitarized Zone. J. Korean Env. Res. Tech. 20(1): 1-12. (in Korean with English abstract)
  17. Phillips, S.J. and M. Dudík(2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  18. Phillips, S.J., M. Dudík, J. Elith, C.H. Graham, A. Lehmann and Y. Leathwick(2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19: 181-197. https://doi.org/10.1890/07-2153.1
  19. Phillips, S.J., R.P. Anderson and R.E. Schapire(2006) Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  20. Phillips, S.J., R.P. Anderson, M. Dudík, R.E. Schapire and M.E. Blair(2017) Opening the black box: an open-source release of Maxent. Ecography 40(7): 887-893. https://doi.org/10.1111/ecog.03049
  21. Seo, C.W., Y.R. Park and Y.S. Choi(2008) Comparison of Species Distribution Models According to Location Data. J. Korea spatial inform. soc. 16: 59-64. (in Korean with English abstract)
  22. Tachikawa, T., M. Kaku, A. Iwasaki, D. Gesch, M. Oimoen, Z. Zhang, J. Danielson, T. Krieger, B. Curtis, J. Haase, M. Abrams, R. Crippen and C. Carabajal(2011) ASTER Global Digital Elevation Model Version 2-Summary of Validation Results. Joint Japan-US ASTER Science Team, http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_2_validation_report_final.pdf