DOI QR코드

DOI QR Code

The Study on Spatial Classification of Riverine Environment using UAV Hyperspectral Image

UAV를 활용한 초분광 영상의 하천공간특성 분류 연구

  • 김영주 (주식회사 자연과기술) ;
  • 한형준 (주식회사 네이처앤휴먼) ;
  • 강준구 (한국건설기술연구원 하천실험센터)
  • Received : 2018.08.10
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

High-resolution images using remote sensing (RS) is importance to secure for spatial classification depending on the characteristics of the complex and various factors that make up the river environment. The purpose of this study is to evaluate the accuracy of the classification results and to suggest the possibility of applying the high resolution hyperspectral images obtained by using the drone to perform spatial classification. Hyperspectral images obtained from study area were reduced the dimensionality with PCA and MNF transformation to remove effects of noise. Spatial classification was performed by supervised classifications such as MLC(Maximum Likelihood Classification), SVM(Support Vector Machine) and SAM(Spectral Angle Mapping). In overall, the highest classification accuracy was showed when the MLC supervised classification was used by MNF transformed image. However, it was confirmed that the misclassification was mainly found in the boundary of some classes including water body and the shadowing area. The results of this study can be used as basic data for remote sensing using drone and hyperspectral sensor, and it is expected that it can be applied to a wider range of river environments through the development of additional algorithms.

하천환경을 구성하고 있는 복잡하고 다양한 인자의 특성에 따라 공간을 세밀하게 분류하기 위해서는 원격탐사(RS)를 통해 고해상도의 영상을 확보하는 것이 무엇보다 중요하다. 본 연구는 하천공간을 대상으로 환경 특성에 따른 공간 분류를 수행하기 위해 드론을 활용하여 취득한 고해상도 초분광 영상의 활용 가능성을 제시하고, 분류 결과에 대한 정확도를 평가하고자 하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다. 이와 같은 연구 결과는 앞으로 드론과 초분광센서를 적용한 원격탐사를 위한 기초자료로 활용 할 수 있으며, 추가적인 알고리즘 개발을 통해 보다 광범위한 하천환경 분야에 적용할 수 있을 것으로 기대한다.

Keywords

References

  1. J. J. Seo, "The Study on Land Cover Classification of Hyperspectral Image Using Decision Tree Method", Master thesis, Chonbuk National University, 2017.
  2. J. M. Kang, J. S. Lee, J. B. Kim, C. Zhang, "A Study to Compare SVM with Maximum Likelihood Classification Using the High Resolution Satellite Imagery", Proceedings of 35th Conference of Korean Society of Civil Engineers, pp.1563-1566, 2009.
  3. J. S. Park, W. H. Lee, M. H. Jo, "Improving Accuracy of Land Cover Classification in River Basins Using Landsat-8 OLI Image, Vegetation Index and Water Index", Journal of the Korean Association of Geographic Information Studies, Vol.19, No.2, pp.98-106. DOI: https://dx.doi.org/10.11108/kagis.2016.19.2.098
  4. S. H, Kim, K. S. Lee, J. R. Ma, M. J. Kook, "Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications", Korean Journal of Remote Sensing, Vol.21, No.4, pp.341-369, 2005.
  5. H. G. Cho, K. S. Lee, "Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species", Korean Journal of Remote Sensing, Vol.30, No.1, pp.25-36, 2014. DOI: https://dx.doi.org/10.7780/kjrs.2014.30.1.3
  6. H. L. Park, J. W. Choi, "Accuracy Evaluation of Supervised Classification by Using Morphological Attribute Profiles and Additional Band of Hyperspectral Imagery", Journal of the Korean Society for Geo-Spatial Information Science, Vol.25, No.1, pp.9-17, 2017. DOI: https://dx.doi.org/10.7319/kogsis.2017.25.1.009
  7. Y. J. Park, H. J. Jang, Y. S. Kim, K. H. Baik, H. S. Lee, "A Research on the Applicability of Water Quality Analysis using the Hyperspectral Sensor", Journal of the Korean Society for Environmental Analysis, Vol.17, No.3, pp.113-125, 2014.
  8. D. Stratoulias, H. Balzter, A. Zlinszky, V. R. Toth, "Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery", Remote Sensing of Environment, Vol.157, pp.72-84, 2015. DOI: https://doi.org/10.1016/j.rse.2014.05.021
  9. T. H. Song, "Development of Korean Typed Drone for Water Resources management", Water for Future, Vol.49, No.6, pp.30-36, 2016.
  10. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, T. Limperis, "Geometrical Considerations and Nomenclature for Reflectance", U.S. Department of Commerce, National Bureau of Standards, USA, 1977.
  11. S. Kaewpijit, J. Le Moigne, T. El-Ghazawi, "Automatic reduction of hyperspectral imagery using wavelet spectral analysis", IEEE Transactions on Geoscience and Remote Sensing, Vol.41, No.4, pp.863-871, 2003. DOI: https://dx.doi.org/10.1109/TGRS.2003.810712
  12. D. Y. Han, Y. W. Cho, Y .I. Kim, Y. W. Lee, "Feature Selection for Image Classification of Hyperion Data", Korean Journal of Remote Sensing, Vol.19, No.2, pp.171-179, 2003.
  13. A. A. Green, M. Berman, P. Switzer, M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal", IEEE Transactions on Geoscience and Remote Sensing, Vol.26, No.1, pp.65-74, 1988. DOI: https://dx.doi.org/10.1109/36.3001
  14. Q. S. Li, F. K. K. Wong, T. Fung, "Assessing the Utility of UAV-borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.XLII-2, No.W6, pp.209-215, 2017. DOI: https://dx.doi.org/10.5194/isprs-archives-XLII-2-W6-209-2017
  15. J. B. Campbell, R. H. Wynne, "Introduction to Remote Sensing, 5th Edition", The Guilford Press, USA, pp.684, 2011.
  16. G. Camps-Valls, L. Bruzzone, "Kernel-based methods for hyperspectral image classification", IEEE Transactions on Geoscience and Remote Sensing, Vol.43, No.6, pp.1351-1362, 2005. DOI: https://dx.doi.org/10.1109/TGRS.2005.846154
  17. J. R. Jensen, "Introductory Digital Image Processing: A Remote Sensing Perspective, 4th Edition"(J. H. Im, H. G. Sohn. S. Park, Trans.), SIGMAPRESS, pp.397-401, 470-471, 477-478, 2016.
  18. J. R. Jensen, "Remote Sensing of the Environment: An Earth Resource"(H. S. Chae, Trans.), SIGMAPRESS, pp.402-403, 2002.