DOI QR코드

DOI QR Code

The study of characterization of extracted vanadium in waste catalyst for vanadium redox flow battery

폐촉매에서 추출한 바나듐 레독스 흐름전지용 바나듐의 특성 연구

  • Kang, Ung Il (Departmaent of fire Service Administration, Honam University)
  • 강웅일 (호남대학교 소방행정학과)
  • Received : 2018.08.07
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

This study examined the characteristics of the waste catalyst used in the petroleum refinery operations. The total pore volume, specific surface area, and average pore size of the spent catalyst used in the petroleum refinery operations were 3.96cc/g, 13.81m2/g, and 1.15A, respectively. The weight loss observed in the range from $25^{\circ}C-700^{\circ}C$ for the spent catalysts using TG and DTA was approximately 23 wt. %. EDS analysis of the waste catalyst sample showed that the five major components were vanadium, nickel, manganese, iron, and copper. The extraction system is attractive for liquid-liquid extraction. In this study, Cynex 272 was used to extract vanadium from waste catalyst. The electrochemical characteristics of the extracted vanadium solution were measured by cyclic voltammetry (CV). As a result, an oxidation / reduction peak appeared, indicating the potential of an electrolytic solution.

석유정제공장에서 사용된 폐촉매의 특성을 조사하여 바나듐 레독스 흐름전지용 소재인 전해액의 제조에 대하여 연구하였다. 석유정제공정에서 사용된 폐촉매의 총공극 부피, 비표면적 및 평균 기공크기는 BET법과 BJH법으로 계산하여 각각 3.96cc/g, 13.81m2/g, 1.15A 구하여 폐촉매에서 바나듐을 회수하여 전해액으로 제조 할 수 있음을 확인하였다. 폐촉매를 TG-DTA분석결과, $25^{\circ}C$부터 $700^{\circ}C$ 범위에서 중량손실이 약 23wt%였다. 폐촉매의 성분을 ICP 장비를 분석하여 황, 바나듐, 니켈, 알루미늄, 망간 철 구리 등의 원소를 확인하였다. 또한 TEM 장비로 측정한 결과 바나듐 외 다른 원소들이 결정성 클러스터가 밝은 점으로 명백하게 드러남을 알 수 있었다. 액액 추출법을 사용하여 폐촉매로 부터 바나듐을 99.25%로 분리하여 추출한 바나듐용액의 전기화학적 특성분석을 위해 CV(cyclic votammetry)측정한 결과, 산화/환원피크가 나타남으로서 전해질 용액으로서의 가능성을 보여주고 있다. 또한 폐촉매로 부터 추출된 바나듐 용액의 순도를 더욱 높여 전해질 용액을 제조하면 기존 상용화된 전해질 성능과 같은 것을 제조 할 것으로 사료된다.

Keywords

References

  1. J.C. Lee, "Recycling white paper" Korea institute od Geoscience and mineral Resources, 2001.
  2. Chiranjeevi T, Pragya R, Gupta S. Gokak DT, Bhargava S Minimization of Waste Spent Catalyst in Refineries Procedia Environmental Sciences 35 610 - 617, 2016. https://doi.org/10.1016/j.proenv.2016.07.047
  3. B.W. Jong, S.C. Rhoads, A.M. Stubbs, T.R. Recovery of principal metal values from waste hydroprocessing catalysts. US Bureau of Mines. US department of interior, p31, 1989.
  4. J.H. Park, Separation and recovery of high purity $V_{2}O_{5}$ and $MoO_{3}$ from petrochemical waste catalysts containing V and Mo, Patent 10-2008-0026448, 2008.
  5. N Vijya Ganesh, Alexei Demchenko, Keith J Stine, Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy, J. Master. Chem 22(14), 6733-6745, 2012. https://doi.org/10.1039/c2jm16633j
  6. Seon Ah Roh, Dae Sung Jung, Sang Done Kim & Christophe Combustion Characteristics of Spent Catalyst and Paper Sludge in an Internally Circulating Fluidized Bed Combustor" Journal of the Air & Waste Management Association Vo 55 1269-1276 2005. https://doi.org/10.1080/10473289.2005.10464733
  7. C. L. Miyazaki, I. S. Medeiros, L. E. R. Filho, "Thermal characterization of dental composites by TG/DTG and DSC", Journal of Thermal Analysis and Calorimetry, Vol.102, No.1, pp.361-367, 2010. DOI: https://dx.doi.org/10.1007/s10973-010-0739-3