DOI QR코드

DOI QR Code

PSO-Based PID Controller for AVR Systems Concerned with Design Specification

설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기

  • Lee, Yun-Hyung (Offshore Training Team, Korea Institute of Maritime and Fisheries Technology)
  • 이윤형 (한국해양수산연수원 해양플랜트교육팀)
  • Received : 2018.07.16
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

비례-적분-미분(PID) 제어기는 단순한 구조와 넓은 범위의 운전영역에서 견고한 성능으로 인해 산업계에서 널리 사용되고 있다. 그러나 제어대상으로서 AVR(Automatic Voltage Regulator)은 전력 시스템의 파라미터의 변동에 강인하지 않다. 따라서 PID 제어기를 사용하여 AVR 시스템의 안정성과 성능을 향상시키는 것이 필요하다. 본 논문에서는 PSO(Partial Swarm Optimization) 알고리즘을 사용하여 AVR 시스템을 위한 최적 PID 제어기 파라미터를 결정하는 새로운 설계 방법을 제시한다. 제안하는 접근법은 쉬운 구현뿐만 아니라 안정된 수렴 특성 및 양호한 계산 효율과 우수한 특성을 갖는다. 또한, 제안 된 PSO-PID 제어기의 성능을 평가하기 위해 새로운 목적함수를 정의한다. 이 목적함수는 최대백분율 오버슈트와 정정시간이 설계사양으로 주어진 경우 이를 반영하기 위한 것이다. 이를 위해 ITAE 평가함수에 제약 조건을 위반하면 벌점을 부과하도록 하여 PSO 알고리즘이 PID 제어기 파라미터를 탐색할 때 설계사양을 만족하도록 하게 한다. 최종적으로 컴퓨터 시뮬레이션을 통해 제안한 PSO-PID 제어기는 단자전압 계단응답에 대해 주어진 설계사양을 만족할 뿐만 아니라 다른 유사한 최근의 연구보다 더 우수한 제어 성능을 보임을 확인하였다.

Keywords

References

  1. P. Kunder, N. J. Balu, M. G. lauby, Power System Stability and Control, Vol.7, McGraw-Hill, New York, 1994
  2. H. Panagopoulos, K. J. Astrom, T. Hagglund, "Design of PID Controllers Based on Constrained Optimization", IEE Proceedings of Control Theory Application, Vol.149, No.1, pp.32-40, 2002. DOI: https://dx.doi.org/10.1049/ip-cta:20020102
  3. R. C. Panda, "Synthesis of PID controller for unstable and integrating processes", Chemical Engineering Science, Vol.64, No.12, pp.2807-2816, 2009. DOI: https://dx.doi.org/10.1016/j.ces.2009.02.051
  4. M. A. Johnson and M. H. Moradi, PID Control: New Identification and Design Methods, Chapter 2, Springer, London, UK, 2005.
  5. U. S. Banu, G. Uma, "Fuzzy Gain Scheduled Continuous Stirred Tank Reactor with Particle Swarm Optimization Based PID Control Minimizing Integral Square Error", Instrumentation Science and Technology, Vol.36, No.4, pp.394-409, 2008. DOI: https://dx.doi.org/10.1080/10739140802151499
  6. M. S. Arumugam, M. V. C. Rao, "On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems", Discrete Dynamics in Nature and Society, Vol.2006, Article ID 79295, pp.1-17, 2006. DOI: https://dx.doi.org/10.1155/DDNS/2006/79295
  7. M. S. Arumugam and M. V. C. Rao, "On the optimal control of single-stage hybrid manufacturing systems via novel and different variants of particle swarm optimization algorithm", Discrete Dynamics in Nature and Society, Vol.2005, No.3, pp.257-279, 2005. DOI: https://dx.doi.org/10.1155/DDNS.2005.257
  8. R. M. Chen, C. M. Wang, "Project Scheduling Heuristics Based Standard PSO for Task-resource Assignment in Heterogeneous Grid", Abstract and Applied Analysis, Vol.2011, Article ID 589862, pp.1-20, 2011. DOI: https://dx.doi.org/10.1155/2011/589862
  9. R. F. Abdel-Kader, "Particle Swarm Optimization for Constrained Instruction scheduling", VLSI Design, Vol.2008, Article ID 930610, pp.1-7, 2008. DOI: https://dx.doi.org/10.1155/2008/930610
  10. S. M. G. Kumar, R. Jain, N. Anantharaman, V. Dharmalingam, K. M. M. S. Begum, "Genetic Algorithm Based PID Controller Tuning for a Model Bioreactor," Indian Institute of Chemical Engineers, Vol.50, No.3, pp.214-226, 2008.
  11. I. Chiha, N. Liouane, P. Borne, "Tuning PID Controller Using Multiobjective Ant Colony Optimization", Applied Computational Intelligence and Soft Computing, Vol.2012, Article ID 536326, pp.1-7, 2012. DOI: https://dx.doi.org/10.1155/2012/536326
  12. V. Rajinikanth, K. Latha, "Bacterial Foraging Optimization Algorithm Based PID Controller Tuning for Time Delayed Unstable Systems", Mediterranean Journal of Measurement and Control, Vol.7, No.1, pp.197-203, 2011.
  13. J. Kennedy and R. Eberhart, "Particle Swarm Optimization", Proceedings of ICNN'95 - International Conference on Neural Networks, Vol.4, Perth, Australia, pp.1942-1948, 1995. DOI: https://dx.doi.org/10.1109/ICNN.1995.488968
  14. Y. Shi, R. Eberhart, "A Modified Particle Swarm Optimizer", 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, USA, pp.69-73, 1998. DOI: https://dx.doi.org/10.1109/icec.1998.699146
  15. Y. Shi, R. C. Eberhart, "Empirical Study of Particle Swarm Optimization", Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, Vol.3, pp.1945-1950, 1999. DOI: https://dx.doi.org/10.1109/cec.1999.785511
  16. R. C. Eberhart, Y. Shi, "Comparison between Genetic Algorithms and Particle Swarm Optimization", Evolutionary Programming VII, pp.611-616, 1998. DOI: https://dx.doi.org/10.1007/bfb0040812
  17. P. J. Angeline, "Using Selection to Improve Particle Swarm Optimization," 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, USA, pp.84-89, 1998. DOI: https://dx.doi.org/10.1109/icec.1998.699327
  18. H. Yoshida, K. Kawata, Y. Fukuyama, "A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment," IEEE Transactions on Power Systems, Vol.15, No.4, pp.1232-1239, 2000. DOI: https://dx.doi.org/10.1109/59.898095
  19. P. Kundur, Power System Stability and Control, TMH, 8th reprint, 2009.
  20. O.I. Elgerd, Electric Energy Systems Theory. An Introduction, Tata McGraw-Hill, New Delhi, 1983.
  21. F. M. Miavagh, E. A. A. Miavaghi, A. R. Ghiasi, M. Asadollahi, "Applying of PID, FPID, TID and ITID controllers on AVR system using particle swarm optimization (PSO)", 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, pp.866-871, 2015. DOI: https://dx.doi.org/10.1109/kbei.2015.7436157
  22. S. Panda, B. K. Sahu, P. K. Mohanty, "Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization", Journal of the Franklin Institute, Vol.349, No.8, pp.2609-2625, 2012. DOI: https://dx.doi.org/10.1016/j.jfranklin.2012.06.008
  23. H. Gozde, M. C. Taplamacioglu, M. Ari, "Automatic Voltage Regulator(AVR) design with Chaotic Particle Swarm Optimization", Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp.23-26, 2014. DOI: https://dx.doi.org/10.1109/ecai.2014.7090158
  24. H. Zhu, L. Li, Y. Zhao, Y. Guo, Y. Yang, "CAS algorithm-based optimum design of PID controller in AVR system", Chaos, Solitons & Fractals, Vol.42, No.2, pp.792-800, 2009. DOI: https://dx.doi.org/10.1016/j.chaos.2009.02.006