DOI QR코드

DOI QR Code

Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis KT11 against Some Pathogens and Antibiotic-Resistant Bacteria

  • Abanoz, Hilal Seval (Institute of Science, University of Eskisehir Osmangazi) ;
  • Kunduhoglu, Buket (Department of Biology, Faculty of Science and Arts, University of Eskisehir Osmangazi)
  • Received : 2018.05.16
  • Accepted : 2018.09.26
  • Published : 2018.10.31

Abstract

In this study, the antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11, isolated from traditional Kargı Tulum cheese, was determined, and bacteriocin KT11 was partially characterized. The results showed that bacteriocin KT11 was antagonistically effective against various Gram-positive and Gram-negative test bacteria, including vancomycin- and/or methicillin-resistant bacteria. The activity of bacteriocin KT11 was completely abolished after treatment with proteolytic enzymes (proteinase K, ${\alpha}$-chymotrypsin, protease and trypsin), which demonstrates the proteinaceous nature of this bacteriocin. Additionally, bacteriocin KT11 remained stable at pH values ranging from 2 to 11 and after autoclaving at $121^{\circ}C$ for 30 min. In addition, the activity of bacteriocin KT11 was stable after treatment with several surfactants (EDTA, SDS, Triton X-100, Tween 80 and urea) and organic solvents (chloroform, propanol, methanol, ethyl alcohol, acetone, hexane and ethyl ether). Cell-free supernatant of E. faecalis KT11 was subjected to ammonium sulfate precipitation and then desalted by using a 3.5-kDa cut-off dialysis membrane. The bacteriocin activity was determined to be 711 AU/mL in the dialysate. After tricine-SDS-PAGE analysis, one peptide band, which had a molecular weight of ~3.5 kDa, exhibited antimicrobial activity. Because the bacteriocin KT11, isolated from E. faecalis KT11, exhibits a broad antimicrobial spectrum, heat stability and stability over a wide pH range, this bacteriocin can be used as a potential bio-preservative in foods. Additionally, bacteriocin KT11 alone or in combination with conventional antibiotics may provide a therapeutic option for the treatment of multidrug-resistant clinical pathogens after further in vivo studies.

Keywords

References

  1. Abbasiliasi S, Tan JS, Ibrahim TAT, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB. 2017. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: A review. RSC Adv 7:29395-29420. https://doi.org/10.1039/C6RA24579J
  2. Abriouel H, Lucas R, Omar NB, Valdivia E, Maqueda M, Martinez-Canamero M, Galvez A. 2005. Enterocin AS-48RJ: A variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 28:383-397. https://doi.org/10.1016/j.syapm.2005.01.007
  3. Aspri M, O'Connor PM, Field D, Cotter PD, Ross P, Hill C, Papademas P. 2017. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int Dairy J 73:1-9. https://doi.org/10.1016/j.idairyj.2017.04.008
  4. Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Braiek OB, Ghomrassi H, Cremonesi P, Morandi S, Fleury Y, Chevalier PL, Hani K, Hadj OB, Ghrairi T. 2017. Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie van Leeuwenhoek 110:771-786. https://doi.org/10.1007/s10482-017-0847-1
  6. Chen H, Hoover DG. 2003. Bacteriocins and their food applications. Comp Rev Food Sci Food Saf 2:82-100.
  7. Chen YS, Wu HC, Yu CR, Chen ZY, Lu YC, Yanagida F. 2016. Isolation and characterization of lactic acid bacteria from Xi-Gua-Mian (fermented watermelon), a traditional fermented food in Taiwan. Ital J Food Sci 28:9-14.
  8. Cherif A, Chehimi S, Limem F, Hansen BM, Hendriksen NB, Daffonchio D, Boudabous A. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J Appl Microbiol 95:990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
  9. Cleveland J, Montville TJ, Nes IF, Chikindas ML. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  10. Cocolin L, Foschino R, Comi G, Fortina MG. 2007. Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol 24:752-758. https://doi.org/10.1016/j.fm.2007.03.001
  11. Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 3:777-788. https://doi.org/10.1038/nrmicro1273
  12. Dicks LMT, Heunis TDJ, van Staden DA, Brand A, Noll KS, Chikindas ML. 2011. Medical and personal care applications of bacteriocins produced by lactic acid bacteria. In Prokaryotic antimicrobial peptides: From genes to applications. Drider D, Rebuffat S (ed). Springer-Verlag, New York, USA. pp 391-421.
  13. Du L, Liu F, Zhao P, Zhao T, Doyle MP. 2017. Characterization of Enterococcus durans 152 bacteriocins and their inhibition of Listeria monocytogenes in ham. Food Microbiol 68:97-103. https://doi.org/10.1016/j.fm.2017.07.002
  14. Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L. 2006. The role and application of enterococci in food and health. Int J Food Microbiol 106:1-24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026
  15. Franz CMAP, Schillinger U, Holzapfel WH. 1996. Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255-270. https://doi.org/10.1016/0168-1605(95)00036-4
  16. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Galvez A. 2011. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125-140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
  17. Galvin M, Hill C, Ross RP. 1999. Lacticin 3147 displays activity in buffer against Gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett Appl Microbiol 28:355-358. https://doi.org/10.1046/j.1365-2672.1999.00550.x
  18. Ghrairi T, Frere J, Berjeaud JM, Manai M. 2008. Purification and characterization of bacteriocins produced by Enterococcus faecium from Tunisian Rigouta cheese. Food Control 19:162-169. https://doi.org/10.1016/j.foodcont.2007.03.003
  19. Giraffa G. 2003. Functionality of enterococci in dairy products. Int J Food Microbiol 88:215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
  20. Gong HS, Meng XC, Wang H. 2010. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from "Jiaoke", a traditional fermented cream from China. Food Control 21:89-96. https://doi.org/10.1016/j.foodcont.2009.04.005
  21. Gupta A, Tiwari SK, Netrebov V, Chikindas ML. 2016. Biochemical properties and mechanism of action of enterocin LD3 purified from Enterococcus hirae LD3. Probiotics Antimicrob Proteins 8:161-169. https://doi.org/10.1007/s12602-016-9217-y
  22. Gyawali R, Ibrahim SA. 2014. Natural products as antimicrobial agents. Food Control 46:412-429. https://doi.org/10.1016/j.foodcont.2014.05.047
  23. Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F. 2012. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113:723-736. https://doi.org/10.1111/j.1365-2672.2012.05338.x
  24. Hernandez D, Cardell E, Zarate V. 2005. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J Appl Microbiol 99:77-84. https://doi.org/10.1111/j.1365-2672.2005.02576.x
  25. Isleroglu H, Yildirim Z, Tokatli M, Oncul N, Yildirim M. 2011. Partial characterisation of enterocin KP produced by Enterococcus faecalis KP, a cheese isolate. Int J Dairy Technol 65:90-97.
  26. Jack RW, Tagg JR, Ray B. 1995. Bacteriocins of Gram positive bacteria. Microbiol Rev 59: 171-200.
  27. Khalkhali S, Mojgani N. 2017. Bacteriocinogenic potential and virulence traits of Enterococcus faecium and E. faecalis isolated from human milk. Iran J Microbiol 9:224-233.
  28. Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. 2004. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648-653. https://doi.org/10.1093/jac/dkh387
  29. Kumar M, Tiwari SK, Srivastava S. 2010. Purification and characterization of enterocin LR/6, a bacteriocin from Enterococcus faecium LR/6. Appl Biochem Biotechnol 160:40-49. https://doi.org/10.1007/s12010-009-8586-z
  30. Kunduhoglu B, Elcioglu O, Gezginc Y, Akyol I, Pilatin S, Cetinkaya A. 2012. Genotypic identification and technological characterization of lactic acid bacteria isolated from traditional Turkish Kargi tulum cheese. Afr J Biotechnol 11:7218-7226.
  31. Lahtinen S, Ouwehand AC, Salminen S, von Wright A. 2011. Lactic acid bacteria: Microbiological and functional aspects. 4th ed. CRS Press, New York, USA. p 286.
  32. Macaluso G, Fiorenza G, Gaglio R, Mancuso I, Scatassa ML. 2016. In vitro evaluation of bacteriocin-like inhibitory substances produced by lactic acid bacteria isolated during traditional Sicilian cheese making. Ital J Food Saf 5:5503.
  33. Perumal V, Venkatesan A. 2017. Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization. LWT- Food Sci Technol 78:303-310. https://doi.org/10.1016/j.lwt.2016.12.048
  34. Pingitore EV, Salvucci E, Sesma F, Nader-Macias ME. 2007. Different strategies for purification of antimicrobial peptides from lactic acid bacteria (LAB). In Communicating current research and educational topics and trends in applied microbiology. Mendez-Vilas A (ed). Formatex, Badajoz, Spain. pp 557-568.
  35. Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P. 2017. A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 12:e0186415. https://doi.org/10.1371/journal.pone.0186415
  36. Rea MC, Dobson A, O'Sullivan O, Crispie F, Fouhy F, Cotter PD, Shanahan F, Kiely B, Hill C, Ross RP. 2010. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci USA 108:4639-4644.
  37. Saelim K, Kaewsuwan S, Tani A, Maneerat S. 2015. Physical, biochemical and genetic characterization of enterocin CE5-1 produced by Enterococcus faecium CE5-1 isolated from Thai indigenous chicken intestinal tract. Songklanakarin J Sci Technol 37:299-307.
  38. Schagger H, Von Jagow G. 1987. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  39. Sparo MD, Castro MS, Andino PJ, Lavigne MV, Ceriani C, Gutierrez GL, Fernandez MM, De Marzi MC, Malchiodi EL, Manghi MA. 2006. Partial characterization of enterocin MR99 from a corn silage isolate of Enterococcus faecalis. J Appl Microbiol 100:123-134. https://doi.org/10.1111/j.1365-2672.2005.02752.x
  40. Todorov SD, Dicks LMT. 2005. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gramnegative bacteria. Enzyme Microb Technol 36:318-326. https://doi.org/10.1016/j.enzmictec.2004.09.009
  41. Todorov SD, Dicks LMT. 2006. Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria: Comparison of the bacteriocins. Process Biochem 41:11-19. https://doi.org/10.1016/j.procbio.2005.01.026
  42. Vimont A, Fernandez B, Hammami R, Ababsa A, Daba H, Fliss I. 2017. Bacteriocin-producing Enterococcus faecium LCW 44: A high potential probiotic candidate from raw camel milk. Front Microbiol 8:865. https://doi.org/10.3389/fmicb.2017.00865
  43. Xi Q, Wang J, Du R, Zhao F, Han Y, Zhou Z. 2017. Purification and characterization of bacteriocin produced by a strain of Enterococcus faecalis TG2. Appl Biochem Biotechnol 184:1106-1119.
  44. von Right A, Axelson L. 2011. Lactic acid bacteria: An introduction. In Lactic acid bacteria: Microbiological and functional aspects. 4th ed. Lahtinen S, Ouwehand AC, Salminen S, Von Wright A (ed). CRS Press, New York. USAs. pp 1-16.
  45. Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M. 2003. Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol 69:5746-5753. https://doi.org/10.1128/AEM.69.10.5546-5553.2003
  46. Yanagida F, Chen Y, Onda T, Shinohara T. 2005. Durancin L28-1A, a new bacteriocin from Enterococcus durans L28-1, isolated from soil. Lett Appl Microbiol 40:430-435. https://doi.org/10.1111/j.1472-765X.2005.01693.x
  47. Yang SC, Lin CH, Sung CT, Fang JY. 2014. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front Microbiol 5:1-10.
  48. Yildirim Z, Ilk Y, Yildirim M, Tokatli K, Oncul N. 2014. Inhibitory effect of enterocin KP in combination with sublethal factors on Escherichia coli O157:H7 or Salmonella Typhimurium in BHI broth and UHT milk. Turk J Biol 38:412-419. https://doi.org/10.3906/biy-1310-69

Cited by

  1. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? vol.9, pp.1, 2018, https://doi.org/10.3390/antibiotics9010032
  2. Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex vol.48, pp.1, 2020, https://doi.org/10.4014/mbl.1909.09016
  3. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods vol.19, pp.1, 2020, https://doi.org/10.1186/s12934-020-01426-w
  4. Determination of minimum inhibitory concentrations of lactic acid bacteria and other antagonist microorganisms vol.291, pp.None, 2021, https://doi.org/10.1051/e3sconf/202129102006
  5. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review vol.20, pp.1, 2018, https://doi.org/10.1111/1541-4337.12658
  6. Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge vol.13, pp.2, 2018, https://doi.org/10.3390/pharmaceutics13020196
  7. Probiotic Potential and Gluten Hydrolysis Activity of Lactobacillus brevis KT16-2 vol.13, pp.3, 2018, https://doi.org/10.1007/s12602-020-09723-x
  8. The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen vol.9, pp.9, 2018, https://doi.org/10.3390/microorganisms9091900
  9. Potential Probiotic Enterococcus faecium OV3-6 and Its Bioactive Peptide as Alternative Bio-Preservation vol.10, pp.10, 2021, https://doi.org/10.3390/foods10102264
  10. Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese vol.41, pp.6, 2018, https://doi.org/10.5851/kosfa.2021.e49