DOI QR코드

DOI QR Code

Comparative Genome Analysis and Evaluation of Probiotic Characteristics of Lactobacillus plantarum Strain JDFM LP11

  • Heo, Jaeyoung (International Agricultural Development and Cooperation Center, Chonbuk National University) ;
  • Shin, Donghyun (Department of Animal Biotechnology, Chonbuk National University) ;
  • Chang, Sung Yong (Department of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Bogere, Paul (Graduate School of Agricultural Convergence Technology, Chonbuk National University) ;
  • Park, Mi Ri (Department of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Ryu, Sangdon (Department of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Lee, Woong Ji (Department of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Yun, Bohyun (Department of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Lee, Hak Kyo (Department of Animal Biotechnology, Chonbuk National University) ;
  • Kim, Younghoon (Department of Animal Science and Institute of Milk Genomics, Chonbuk National University) ;
  • Oh, Sangnam (Department of Functional Food and Biotechnology, Jeonju University)
  • 투고 : 2018.05.28
  • 심사 : 2018.07.24
  • 발행 : 2018.10.31

초록

In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.

키워드

참고문헌

  1. Aballay A, Yorgey P, Ausubel FM. 2000. Salmonella Typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10:1539-1542. https://doi.org/10.1016/S0960-9822(00)00830-7
  2. Balasingham K, Valli C, Radhakrishnan L, Balasuramanyam D. 2017. Probiotic characterization of lactic acid bacteria isolated from swine intestine. Vet World 10:825-829. https://doi.org/10.14202/vetworld.2017.825-829
  3. Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71-94.
  4. Buchanan RE, Gibbons NE. 1974. Bergey's manual of determinative bacteriology. 8thed. The Williams and Wilkins Co., Baltimore, MD, USA.
  5. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  6. Chaari F, Blibech M, Bhiri F, Maktouf S, Ellouz-Ghorbel R, Ellouz-Chaabouni S. 2012. Production of mixed-linkage betaoligosaccharides from lichenan using immobilized Bacillus licheniformis UEB CF lichenase. Appl Biochem Biotechnol 168:616-628. https://doi.org/10.1007/s12010-012-9804-7
  7. Claesson MJ, van Sinderen D, O'Toole PW. 2008. Lactobacillus phylogenomics-towards a reclassification of the genus. Int J Syst Evol Microbiol 58:2945-2954. https://doi.org/10.1099/ijs.0.65848-0
  8. FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations and World Health Organization working group report. Available from: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed at July 20, 2011.
  9. Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66:365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  10. Garcia-Ferrer I, Arede P, Gomez-Blanco J, Luque D, Duquerroy S, Caston JR, Goulas T, Gomis-Ruth FX. 2015. Structural and functional insights into Escherichia coli ${\alpha}$2-macroglobulin endopeptidase snap-trap inhibition. Proc Natl Acad Sci USA 112:8290-8295. https://doi.org/10.1073/pnas.1506538112
  11. Gareau MG, Sherman PM, Walker WA. 2010. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7:503-514. https://doi.org/10.1038/nrgastro.2010.117
  12. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C. 2002. Genetic analysis of tissue aging in Caenorhabditis elegans: A role for heat-shock factor and bacterial proliferation. Genetics 161:1101-1112.
  13. Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE, Calderwood SB, Ausubel FM. 2001. A simple model host for identifying gram-positive virulence factors. Proc Natl Acad Sci USA 98:10892-10897. https://doi.org/10.1073/pnas.191378698
  14. Heller KJ. 2001. Probiotic bacteria in fermented foods: Product characteristics and starter organisms. Am J Clin Nutr 73:374S-379S. https://doi.org/10.1093/ajcn/73.2.374s
  15. Jang SY, Heo J, Park MR, Song MH, Kim JN, Jo SH, Jeong DY, Lee HK, Kim Y, Oh S. 2017. Genome characteristics of Lactobacillus fermentum strain JDFM216 for application as probiotic bacteria. J Microbiol Biotechnol 27:1266-1271. https://doi.org/10.4014/jmb.1703.03013
  16. Kim Y, Mylonakis E. 2012. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infect Immun 80:2500-2508. https://doi.org/10.1128/IAI.06350-11
  17. Lee J, Yun HS, Cho KW, Oh S, Kim SH, Chun T, Kim B, Whang KY. 2011. Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: Immune modulation and longevity. Int J Food Microbiol 148:80-86. https://doi.org/10.1016/j.ijfoodmicro.2011.05.003
  18. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. 2008. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5-28. https://doi.org/10.1093/toxsci/kfn121
  19. Lopez-Huertas E. 2015. Safety and efficacy of human breast milk Lactobacillus fermentum CECT 5716. A mini-review of studies with infant formulae. Benef Microbes 6:219-224. https://doi.org/10.3920/BM2014.0091
  20. Loytynoja A, Goldman N. 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320:1632-1635. https://doi.org/10.1126/science.1158395
  21. McGhee JD. 2007. The C. elegans intestine. WormBook. pp 1-36.
  22. Obeid R. 2013. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients 5:3481-3495. https://doi.org/10.3390/nu5093481
  23. Ouwehand AC, Salminen S, Isolauri E. 2002. Probiotics: An overview of beneficial effects. Antonie Van Leeuwenhoek 82:279-289. https://doi.org/10.1023/A:1020620607611
  24. Pao SS, Paulsen IT, Saier MHJ. 1998. Major facilitator superfamily. Microbiol Mol Biol Rev 62:1-34.
  25. Park MR, Yun HS, Son SJ, Oh S, Kim Y. 2014. Short communication: Development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans. J Dairy Sci 97:6828-6834. https://doi.org/10.3168/jds.2014-8561
  26. Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543-594.
  27. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126-19131. https://doi.org/10.1073/pnas.0906412106
  28. Rolain T, Bernard E, Courtin P, Bron PA, Kleerebezem M, Chapot-Chartier MP, Hols P. 2012. Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1. Microb Cell Fact 11:137. https://doi.org/10.1186/1475-2859-11-137
  29. Song M, Yun B, Moon JH, Park DJ, Lim K, Oh S. 2015. Characterization of selected Lactobacillus strains for use as probiotics. Korean J Food Sci An 35:551-556. https://doi.org/10.5851/kosfa.2015.35.4.551
  30. Sornplang P, Piyadeatsoontorn S. 2016. Probiotic isolates from unconventional sources: A review. J Anim Sci Technol 58:26. https://doi.org/10.1186/s40781-016-0108-2
  31. Suyama M, Torrents D, Bork P. 2006. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609-612. https://doi.org/10.1093/nar/gkl315
  32. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: A customizable web server for fast metagenomic sequence analysis. BMC Genomics 12:444. https://doi.org/10.1186/1471-2164-12-444
  33. Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586-1591. https://doi.org/10.1093/molbev/msm088

피인용 문헌

  1. Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563 vol.39, pp.4, 2018, https://doi.org/10.5851/kosfa.2019.e50
  2. Probiotics and Antimicrobial Effect of Lactiplantibacillus plantarum, Saccharomyces cerevisiae, and Bifidobacterium longum against Common Foodborne Pathogens in Poultry vol.10, pp.9, 2020, https://doi.org/10.3390/agriculture10090368
  3. Complete genome sequencing and comparative genomic analysis of Lactobacillus acidophilus C5 as a potential canine probiotics vol.63, pp.6, 2021, https://doi.org/10.5187/jast.2021.e126