DOI QR코드

DOI QR Code

Analytic model for the Power-Optimal Data Transmission Interval of Wireless Sensors in Internet of Things

사물 인터넷 환경에서 무선 센서 기기의 전력 효율적 데이터 전송주기 결정을 위한 최적화 모형

  • Lee, Se Won (Division of Business Administration, Pukyong National University) ;
  • Lim, Sung-Hwa (Department of Multimedia, Namseoul University)
  • 이세원 (부경대학교 경영학부) ;
  • 임성화 (남서울대학교 멀티미디어학과)
  • Received : 2018.06.22
  • Accepted : 2018.07.25
  • Published : 2018.07.31

Abstract

Wireless sensors in Internet of Things are getting closer to our daily lives. Since wireless sensors have limited battery power, energy efficient schemes should be employed. In this paper, we analyzed a system by using stochastic model and then solved an optimization problem, given that the gathered sensor data are aggregated before being transmitted to the sensor servers from a wireless sensor device. Using the developed model, we also proposed a optimal solution to determine the energy efficient sensor data transmitting interval. We also conducted performance evaluations of our proposals using numerical examples.

센서를 활용한 다양한 응용들의 등장으로 사물 인터넷 환경에서 무선 센서 기기들의 활용범위가 점점 넓어지고 있다. 그런데 무선 센서 특성상 전력자원의 한계가 있으므로, 무선 통신과 같이 전력소모가 큰 작업들을 에너지 효율적으로 운영해야 한다. 이를 위해, 본 논문에서는 수집된 센서 데이터를 모아서 전송하는 방식(data aggregation) 하에서 확률 모형 기반의 에너지 소비 모델을 개발하고, 개발된 모델을 기반으로 전력소비를 최소화하는 센서 데이터 전송주기를 구하였다. 또한, 분석 결과를 바탕으로 최적 전송주기의 성능을 수치예제로 보였다.

Keywords

References

  1. H. Alemdar and C. Ersoy, "Wireless Sensor Networks for Healthcare: A Survey," Computer Networks, Vol. 54, pp. 2688-2710, 2010. https://doi.org/10.1016/j.comnet.2010.05.003
  2. Amadeus Traveler Tribes 2030 - Building a More Rewarding Journey, Available: http://www.amadeus.com/
  3. T. Rault, A. Bouabdallah and Y. Challal, "Energy Efficiency in Wireless Sensor Networks: A Top-down Survey," Computer Networks, Vol. 67, pp. 104-122, 2014. https://doi.org/10.1016/j.comnet.2014.03.027
  4. S. Sasirekha and S. Swamynathan, “A Comparative Study and Analysis of Data Aggregation Techniques in WSN,” Indian Journal of Science and Technology, Vol. 8, No. 26, pp. 1-10, Oct. 2015.
  5. H.W. Lee, Queueing Theory, 3rd ed. Sigma Press, 2006 (In Korean)
  6. S.-H. Lim, S. W. Lee, B.-H. Lee, and S. Lee, “Power-Aware Optimal Checkpoint Intervals for Mobile Consumer Devices,” IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, pp. 1637-1645, Nov. 2011. https://doi.org/10.1109/TCE.2011.6131136
  7. S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee, H.W. Lee, “Stochastic method for Power-Aware Checkpoint Intervals in Wireless Environments: Theory and Application,” Journal of Industrial and Management Optimization, Vol. 8, No. 4, pp. 969-986, Nov. 2012. https://doi.org/10.3934/jimo.2012.8.969
  8. S.M. Ross, Stochastic Processes, 2nd ed. Wiley, 1996.
  9. "CW1200:802.11n dual-band WLAN system-on-chip," Data Sheet, ST Ericsson.
  10. "Mobile DRAM Power-Saving Features and Power Calculations," Technical note, TN-46-12, Micron, May 2009.
  11. Wolfram Official Web Site, Available: http://reference.wolfram.com/language/ref/ProductLog.html