DOI QR코드

DOI QR Code

농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정시스템

The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity

  • Park, Jinuk (Computer Engineering of Graduate School, Catholic Kwandong University) ;
  • Ahn, Heuihak (Department of Software, Catholic Kwandong University) ;
  • Lee, ByungKwan (Department of Software, Catholic Kwandong University)
  • 투고 : 2018.08.21
  • 심사 : 2018.10.04
  • 발행 : 2018.10.30

초록

본 논문에서 제안하는 "농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정 시스템"에서는 정밀농업을 지원하는 농장의 위치 정보를 기반으로 기상 정보를 수집하고, 수집한 기상 정보와 농작물의 실시간 데이터를 이용하여, 작물의 현재 상태를 예측하고 그 결과를 농장 관리인에게 알려준다. 제안하는 시스템은 첫째, 정밀농업을 지원하는 농장의 위치 정보를 기반으로 기상 정보를 수집하는 ICM(Information Collection System)을 설계하고, 둘째, 딥러닝 알고리즘을 기반으로 현재 날씨에 따라 농장 토지의 탄소, 수소, 산소, 질소, 수분 함유량이 재배하고 있는 작물에 적합특정 작물을 재배하기 좋은 상태인지 판단하는 DRCM(Deep learning based Risk Calculation Module)을 설계하고, 셋째, DRCM의 결과를 기반으로 사용자에게 작물의 상태를 점검할 것을 알려주는 메시지를 전송하는 RNM(Risk Notification Module)을 설계한다. 제안하는 시스템은 기존의 시스템과 비교하였을 때, 데이터양의 증가로 인해 발생하는 정확도 감소 비율이 낮고, 분석 단계에 비지도학습을 적용하기 때문에 안정성을 향상 시킬 수 있다. 결과적으로 농장 데이터 분석 성공률이 약 5.15%가량 향상되었고, 환경 변화에 따른 작물 성장의 위험한 상태정보 다양하게 적용하였을 때, 위험한 상태정보에 대하여 상세하게 추론할 수 있었다. 이는 다양한 내 외부 환경으로부터 발생할 수 있는 작물의 질병을 미연에 예방할 수 있고, 작물이 성장하는데 최적화된 환경을 제공할 수 있는 효과를 나타낸다.

This paper proposes "The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity" that collects weather information based on location supporting precision agriculture, predicts current crop condition by using the collected information and real time crop data, and notifies a farmer of the result. The system works as follows. The ICM(Information Collection Module) collects weather information based on location supporting precision agriculture. The DRCM(Deep learning based Risk Calculation Module) predicts whether the C, H, N and moisture content of soil are appropriate to grow specific crops according to current weather. The RNM(Risk Notification Module) notifies a farmer of the prediction result based on the DRCM. The proposed system improves the stability because it reduces the accuracy reduction rate as the amount of data increases and is apply the unsupervised learning to the analysis stage compared to the existing system. As a result, the simulation result shows that the ADS improved the success rate of data analysis by about 6%. And the ADS predicts the current crop growth condition accurately, prevents in advance the crop diseases in various environments, and provides the optimized condition for growing crops.

키워드

참고문헌

  1. Small and Medium Business Administration, "Technology Roadmap for SME", 27, Small and Medium Business Administration, 2017
  2. Seyong Lee, "Cloud-based smart farm technology", Information & communications magazine, Vol.34, No.1, pp.51-57, 2016.
  3. Sung-Il Hwang, Jong-Moon Joo, Seong-Yong Joo, "ICT-Based Smart Farm Factory Systems through the Case of Hydroponic Ginseng Plant Factory", The Journal of Korean Institute of Communications and Information Sciences, Vol.40, No.4, pp.780-790, 2015. https://doi.org/10.7840/kics.2015.40.4.780
  4. JaeGu Back, Hying-Woo Lee, "Design and Implementation of Self-installing Agricultural Automation System for Remote Monitoring and Control Based on LPWA Technology", Journal of The Korea Internet of Things Society, Vol.3, No.1, pp.13-19, 2017.
  5. Sang-il Na, Chan-won Park, Kyu-ho So, Jae-moon Park, Kyung-do Lee, "Satellite Imagery based Winter Crop Classification Mapping using Hierarchica Classification", Korean journal of remote sensing, Vol.33, No.5, pp.677-687, 2017. https://doi.org/10.7780/kjrs.2017.33.5.2.7
  6. Wonyoung An, YunHi Chang, "A Study on the Livestock Feed Measuring Sensor and Supply Management System Implementation based on the IoT", Journal of Korea institute of information, electronics, and communication technology, Vol.10, No.5, pp.442-454, 2017. https://doi.org/10.17661/jkiiect.2017.10.5.442
  7. Yongju Park, Jun Moon, "Smart Dairy Management System Development Using Biometric/Environmental Sensors and Farm Control Gateway", IEMEK Journal of embedded systems and applications, Vol.11, No.1, pp.15-20, 2016. https://doi.org/10.14372/IEMEK.2016.11.1.15
  8. Woongsup Lee, Seong Hwan Kim, Jongyeol Ryu, Tae-Won Ban, "Fast Detection of Disease in Livestock based on Deep Learning", Journal of the Korea Institute of Information and Communication Engineering, Vol.21, No.5, pp.1009-1015, 2017. https://doi.org/10.6109/JKIICE.2017.21.5.1009
  9. Ji-Hun Ha, Yong Hee Lee, Yong-Hyuk Kim, "Forecasting the Precipitation of the Next Day Using Deep Learning", Journal of Korean institute of intelligent systems, Vol.26, No.2, pp.93-98, 2016. https://doi.org/10.5391/JKIIS.2016.26.2.093
  10. Ahram Song, Yongil Kim, "Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems", Korean Journal of Remote Sensing, Vol.33, No.6, pp.1061-1073, 2017. https://doi.org/10.7780/kjrs.2017.33.6.2.3
  11. Jae-Wan Yang, Young-Doo Lee, In-Soo Koo, "Sensor Fault Detection Scheme based on Deep Learning and Support Vector Machine", The journal of the Institute of Internet Broadcasting and Communication, Vol.18, No.2, pp.185-195, 2018. https://doi.org/10.7236/JIIBC.2018.18.2.185
  12. Soo-Hwan Lee, "Image reconstruction technique using deep learning architecture", Journal of the Korean Society of Marine Engineering, 42권, 2호, pp.121-126, 2018. https://doi.org/10.5916/jkosme.2018.42.2.121
  13. Kim Hee-Un, Bae Tae-Suk, "Preliminary Study of Deep Learning-based Precipitation", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol.35, No.5, pp.423-430, 2017 https://doi.org/10.7848/KSGPC.2017.35.5.423