DOI QR코드

DOI QR Code

굴착공 내 슬라임 두께 평가를 위한 슬라임미터의 개발 및 적용

Development and Application of Slime Meter for Evaluation of Slime Thickness in Borehole

  • 홍원택 (고려대학교 건축사회환경공학부) ;
  • 우규성 (국토교통부 대전지방국토관리청) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 송명준 (현대건설 연구개발본부) ;
  • 임대성 (삼보E&C 연구팀) ;
  • 박민철 (고려대학교 건축사회환경공학부)
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Woo, Gyuseong (Daejeon Regional Office of Construction Management, Ministry of Land, Infrastructure and Transport) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Song, Myung Jun (R&D Division, Hyundai Engrg. & Construction. Co., Ltd.) ;
  • Lim, Daesung (Research Team, Sambo E&C Co., Ltd.) ;
  • Park, Min-Chul (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 투고 : 2018.08.28
  • 심사 : 2018.10.08
  • 발행 : 2018.10.31

초록

굴착공 저면에 형성된 슬라임은 현장타설말뚝의 과도한 침하 및 지지력 감소를 야기하므로 콘크리트 타설 전 해당 슬라임에 대한 조사가 요구된다. 본 연구에서는 굴착공 내 전기적 특성을 이용하여 굴착공 저면에 형성된 슬라임을 평가하기 위한 기법으로써 슬라임미터(slime meter)를 개발하였다. 슬라임미터는 전극 및 온도센서가 설치된 프로브 및 로터리엔코더가 설치된 프레임으로 구성되어 굴착공 심도에 따라 온도영향이 고려된 전기비저항을 평가할 수 있다. 슬라임미터의 적용을 위하여 직경 3m, 심도 46.9m의 굴착공에 대해 시험시간 및 위치가 서로 다른 총 3회의 현장실험이 수행되었다. 3회의 현장실험 모두 굴착공 내 유체에서 일정한 전기비저항이 측정되었으나 슬라임 표면이 존재하는 심도에서 전기비저항이 급격히 증가하는 결과를 보였으며, 해당 심도 및 지반 굴착심도의 차를 이용하여 슬라임의 두께를 산정할 수 있었다. 슬라임 두께 산정 결과, 동일 실험위치에서의 슬라임 두께는 시간 경과에 따라 증가하였으며 가장자리에서의 슬라임이 중앙부의 슬라임보다 두껍게 평가되었다. 본 연구에서 개발된 슬라임미터는 간소화된 장비구성으로 굴착공 내 전기비저항을 평가하여 슬라임 두께를 산정하므로 향후 굴착공 저면의 슬라임 평가를 위한 기법으로써 활용될 수 있을 것이라 기대된다.

The slime formed at the bottom of the borehole causes the excessive displacement and loss of the bearing capacity of the drilled shaft. In this study, the slime meter is developed for the evaluation of the slime based on the electrical properties of the fluid and the slime in the borehole. The slime meter is composed of a probe instrumented with electrodes and temperature sensor and a frame with rotary encoder, so that the slime meter profiles the electrical resistivity compensated with temperature effect along the depth. For the application of the slime meter, three field tests are conducted at a borehole with a diameter of 3 m and a depth of 46.9 m with different testing time and locations. For all the tests, the experimental results show that while electrical resistivities are constantly measured in the fluid, the electrical resistivities sharply increase at the surface of the slime. Therefore, the slime thicknesses are estimated by the differences in the depths of the slime surface and the ground excavation. The experimental results obtained at the same testing point with different testing time show that the estimated thickness of the slime increases by the elapsed time. Also, the estimated slime at the side of the borehole is thicker than that at the center of the borehole. As the slime meter estimates the slime in the borehole by measuring the electrical resistivity with simple equipment, the slime meter may be effectively used for the evaluation of the slime formed at the bottom of the borehole.

키워드

참고문헌

  1. AASHTO (2010), "AASHTO LRFD Bridge Construction Specifications", American Association of State Highway and Transportation Officials, Washington, DC, 5-1-5-23.
  2. Abu-Hassanein, Z. S., Benson, C. H., and Blotz, L. R. (1996), "Electrical Resistivity of Compacted Clays", Journal of Geotechnical Engineering, Vol.122, No.5, pp.397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  3. Archie, G. E. (1942), "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics", Transactions of the AIME, Vol.146, No.1, pp.54-62. https://doi.org/10.2118/942054-G
  4. Banisi, S., Finch, J. A., and Laplante, A. R. (1993), "Electrical Conductivity of Dispersions: A Review", Minerals Engineering, Vol.6, No.4, pp.369-385. https://doi.org/10.1016/0892-6875(93)90016-G
  5. Bartholomew, R. N. and Casagrande, R. M. (1957), "Measuring Solids Concentration in Fluidized Systems by Gamma-Ray Absorption", Industrial & Engineering Chemistry, Vol.49, No.3, pp.428-431. https://doi.org/10.1021/ie51392a041
  6. Brown, D. A., Turner, J. P., and Castelli R. J. (2010), "FHWA NHI-10-016, Drilled Shafts: Construction Procedures and LRFD Design Methods", National Highway Institute U.S. Department of Transportation Federal Highway Administration, Washington, DC, 7-1-7-43.
  7. Campanella, R. G. and Weemees, I. (1990), "Development and Use of an Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol.27, No.5, pp.557-567. https://doi.org/10.1139/t90-071
  8. Chun, O. H., Yoon, H. K., Park, M. C., and Lee, J. S. (2014), "Slime Thickness Evaluation of Bored Piles by Electrical Resistivity Probe", Journal of Applied Geophysics, 108, 167-175. https://doi.org/10.1016/j.jappgeo.2014.07.004
  9. Ding, J. Z., McIntosh, K. A., and Simon, R. M. (2015), "New Device for Measuring Drilled Shaft Bottom Sediment Thickness", The Journal of the Deep Foundations Institute, Vol.9, No.1, pp. 42-47. https://doi.org/10.1179/1937525515Y.0000000004
  10. FHWA (2010), "Drilled shafts: Construction procedures and LRFD design methods", US Department of Transportation, Federal Highway Administration, 972.
  11. Jackson, P. D., Smith, D. T., and Stanford, P. N. (1978), "Resistivity-Porosity-Particle Shape Relationships for Marine Sands", Geophysics, Vol.43, No.6, pp.1250-1268. https://doi.org/10.1190/1.1440891
  12. Jung, S. H., Yoon, H. K., and Lee, J. S. (2015), "Effects of Temperature Compensation on Electrical Resistivity during Subsurface Characterization", Acta Geotechnica, Vol.10, No.2, pp.275-287. https://doi.org/10.1007/s11440-014-0301-8
  13. Kim, J. H., Yoon, H. K., Cho, S. H., Kim, Y. S., and Lee, J. S. (2011), "Four Electrode Resistivity Probe for Porosity Evaluation", Geotechnical Testing Journal, Vol.34, No.6, pp.1-8.
  14. Lam, C., Jefferis, S. A., and Martin, C. M. (2014), "Effects of Polymer and Bentonite Support Fluids on Concrete-Sand Interface Shear Strength", Geotechnique, Vol.64, No.1, pp.28-39. https://doi.org/10.1680/geot.13.P.012
  15. Light, T. S. (1984), "Temperature Dependence and Measurement of Resistivity of Pure Water", Analytical Chemistry, Vol.56, No.7, pp.1138-1142. https://doi.org/10.1021/ac00271a019
  16. Moghaddam, R. B., Hannigan, P. J., and Anderson, K. (2018), "Quantitative Assessment of Drilled Shafts Base-Cleanliness Using the Shaft Quantitative Inspection Device (SQUID)", IFCEE 2018, 575-588.
  17. O'Neill, M., Tabsh, S. W., and Sarhan, H. (2003), "Response of Drilled Shafts with Minor Flaws to Axial and Lateral Loads", Engineering Structures, Vol.25, No.1, pp.47-56. https://doi.org/10.1016/S0141-0296(02)00117-7
  18. Ramaswamy, S. D. and Pertusier, E. M. (1986), "Construction of Barrettes for High-rise Foundations", Journal of Construction Engineering and Management, Vol.112, No.4, pp.455-462. https://doi.org/10.1061/(ASCE)0733-9364(1986)112:4(455)
  19. Saarenketo, T. (1998), "Electrical Properties of Water in Clay and Silty Soils", Journal of Applied Geophysics, Vol.40, No.1, pp. 73-88. https://doi.org/10.1016/S0926-9851(98)00017-2
  20. Schmertmann, J. H., Hayes, J. A., Molnit, T., and Osterberg, L. O. (1998), "O-cell Testings Case Histories Demonstrate the Importance of Bored Pile (Drilled Shaft) Construction Technique", 4th International Conferences on Case Histories in Geotechnical Engineering, St. Louis, MO, 1103-1115.