DOI QR코드

DOI QR Code

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test

  • Haeri, Hadi (College of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (College of Architecture and Environment, Sichuan University) ;
  • Moradizadeh, Masih (Department of Structural and Engineering Geology, School of Geology, College of Science, University of Tehran)
  • Received : 2018.08.08
  • Accepted : 2018.10.11
  • Published : 2018.10.25

Abstract

Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

Keywords

References

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
  2. Ameen, M., Raghu Prasad, B.K. and Gopalakrishnan, A.R. (2011), "Modeling of concrete cracking-a hybrid technique of using displacement discontinuity element method and direct boundary element method", Eng. Anal. Bound. Elem., 35(9), 1054-1059. https://doi.org/10.1016/j.enganabound.2011.03.009
  3. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  4. Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
  5. Bi, J., Zhou, X.P. and Xu, X.M. (2017), "Numerical simulation of failure process of rock-like materials subjected to impact loads", Int. J. Geomech., 17(3), 04016073 https://doi.org/10.1061/(ASCE)GM.1943-5622.0000769
  6. Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6
  7. Bombolakis, E.G. (1968), "Photoelastic study of initial stages of brittle fracture in compression", Tectonophys., 6(6), 461-473. https://doi.org/10.1016/0040-1951(68)90072-3
  8. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  9. Donze, F.V., Richefeu, V. and Magnier, S.A. (2009), "Advances in discrete element method applied to soil rock and concrete mechanics", Elec. J. Geol. Eng., 8(1), 1-44.
  10. Erdogan, F. and Sih, G.C. (1963), "On the crack extension path in plates under plane loading and transverse shear", ASME J. Bas. Eng., 85(4), 519-527. https://doi.org/10.1115/1.3656897
  11. Fan, Y., Zhu, Z., Kang, J., Fu, Y., (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solid., 22, 1205-1218.
  12. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  13. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar nonpersistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  14. Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  15. Haeri, H. (2015b), "Propagation Mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  16. Haeri, H. (2015c), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623, https://doi.org/10.12989/cac.2015.16.4.605
  17. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
  18. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737 https://doi.org/10.12989/cac.2016.17.6.723
  19. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  20. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mechanica Sinica, 31(6), 855-870 https://doi.org/10.1007/s10409-015-0436-3
  21. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308 https://doi.org/10.1007/s12517-014-1741-z
  22. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  23. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  24. Haeri, H., sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mechanica Soilda Sinica, 5, 555-566.
  25. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
  26. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Solid. Struct., 11(8), 1400-1416 https://doi.org/10.1590/S1679-78252014000800007
  27. Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J. Fract., 1(3), 137-155.
  28. Hussian, M.A., Pu, E.L. and Underwood, J.H. (1974), "Strain energy release rate for a crack under combined mode I and mode II", Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, 2-28.
  29. Ibrahim, M.W., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Procedia-Social Behav. Sci., 198, 2280-2289.
  30. Ingraffea, A.R. and Heuze, F.E. (1980), "Finite element models for rock fracture mechanics", Int. J. Numer. Anal. Meth. Geomech., 4(1), 25-43. https://doi.org/10.1002/nag.1610040103
  31. Itasca, C.G. (2002), Users' Manual for Particle Flow Code in 2 Dimensions (PFC2D), Version 3.1, Minneapolis, Minnesota, U.S.A.
  32. Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x
  33. Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and nonuniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128, 139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011
  34. Jiefan, H., Ganglin, C., Yonghong, Z. and Ren, W. (1990), "An experimental study of the strain field development prior to failure of a marble plate under compression", Tectonophys., 175(1-3), 184-269.
  35. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
  36. Lajtai, E.Z. (1971), "A theoretical and experimental evaluation of the Griffith theory of brittle fracture", Tectonophys., 11(2), 129156.
  37. Lajtai, E.Z. (1974), "Brittle fractures in compression", Int. J. Fract., 10(4), 525-536. https://doi.org/10.1007/BF00155255
  38. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277 https://doi.org/10.1016/j.conbuildmat.2013.06.046
  39. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/sem.2015.53.6.1271
  40. Leonel, E.D., Chateauneuf, A. and Venturini, W.S. (2012), "Probabilistic crack growth analyses using a boundary element model: Applications in linear elastic fracture and fatigue problems", Eng. Analy. Bound. Elem., 36, 944-959. https://doi.org/10.1016/j.enganabound.2011.12.016
  41. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  42. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  43. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solid. Struct., 42, 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033
  44. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  45. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact. Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  46. Miller, J.T. and Einstein, H.H. (2008), "Crack coalescence tests on granite", Proceedings of the 42nd US Rock Mechanics Symposium, San Francisco, U.S.A.
  47. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  48. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Mortar, 17(4), 33-39.
  49. Mughieda, O. and Alzoubi, A.K. (2004), "Fracture mechanisms of offset rock joints-a laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
  50. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  51. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  52. Ozecebe, G. (2011), "Minimum flexural reinforcement for Tbeams made of higher strength concrete", Can. J. Civil Eng., 26(5), 525-534. https://doi.org/10.1139/l99-013
  53. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4) 167-181.
  54. Park, N.S. (2001), "Crack propagation and coalescence in rock under uniaxial compression", M.Sc. Dissertation, Seoul National University, Korea.
  55. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  56. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  57. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  58. Reyes, O. and Einstein, H.H. (1991), "Failure mechanisms of fractured rock-a fracture coalescence model", Proceedings of the 7th Congress of the ISRM, Aachen, Germany.
  59. Ruiz, G. and Carmona, R.J. (2006a), "Experimental study on the influence of the shape of the cross-section and the rebar arrangement on the fracture of LRC beams", Mater. Struct., 39(3), 343-352. https://doi.org/10.1007/s11527-005-9006-7
  60. Ruiz, G., Carmona, R.J. and Cendon, D.A. (2006b), "Propagation of a cohesive crack through adherent reinforcement layers", Comput. Meth. Appl. Mech. Eng., 195(52), 7237-7248. https://doi.org/10.1016/j.cma.2005.01.029
  61. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
  62. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  63. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  64. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of nonpersistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  65. Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
  66. Shen, B. (1995), "The mechanism of fracture coalescence in compression-experimental study and numerical simulation", Eng. Fract. Mech., 51(1), 73-85. https://doi.org/10.1016/0013-7944(94)00201-R
  67. Shen, B. and Stephansson, O. (1994), "Modification of the Gcriterion for crack propagation subjected to compression", Eng. Fract. Mech., 47(2), 177-189. https://doi.org/10.1016/0013-7944(94)90219-4
  68. Shiryaev, A.M. and Kotkis, A.M. (1982), "Methods for determining fracture toughness of brittle porous materials", Industr. Labor., 48(9), 917-918.
  69. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  70. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493
  71. Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Phys. Sol., 48(1), 175209.
  72. Silling, S.A. (2017), "Stability of peridynamic correspondence material models and their particle discretizations", Comput. Meth. Appl. Mech. Eng., 322, 42-57. https://doi.org/10.1016/j.cma.2017.03.043
  73. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  74. Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61(3-4), 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8
  75. Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part II: Numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X
  76. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  77. Vallejo, L.E. (1987), "The influence of fissures in a stiff clay subjected to direct shear", Geotech., 37(1), 69-82. https://doi.org/10.1680/geot.1987.37.1.69
  78. Vallejo, L.E. (1988), "The brittle and ductile behavior of clay samples containing a crack under mixed mode loading", Theor. Appl. Fract. Mech., 10(1), 73-78. https://doi.org/10.1016/0167-8442(88)90058-4
  79. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038
  80. Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero, S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", Int. J. Numer. Analy. Meth. Geomech., 32(11), 1405-1415. https://doi.org/10.1002/nag.665
  81. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469 https://doi.org/10.1016/j.engfracmech.2011.06.004
  82. Wang, R., Zhao, Y., Chen, Y., Yan, H., Yin, Y.Q., Yao, C.Y. and Zhang, H. (1987), "Experimental and finite simulation of Xshear fractures from a crack in marble", Tectonophys., 144, 141150.
  83. Wang, T., Dai, J.G. and Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035
  84. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  85. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  86. Wong, L.N.Y. and Einstein, H.H. (2008a), "Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4
  87. Wong, L.N.Y. and Einstein, H.H. (2008b), "Crack coalescence in molded gypsum and Carrara marble: Part 2. Microscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3
  88. Wong, L.N.Y. and Einstein, H.H. (2009), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006
  89. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
  90. Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part I: Experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8
  91. Wong, R.H.C., Guo, Y.S.H., Liu, L.Q., Liu, P.X. and Ma, S.P. (2008), "Nucleation and growth of anti-wing crack from tips of strike-slip flaw", Proceedings of the 42nd US Rock Mechanics Symposium, San Francisco, U.S.A.
  92. Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using Numerical Manifold method", Constr. Build. Mater., 72, 72-82 https://doi.org/10.1016/j.conbuildmat.2014.08.082
  93. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541
  94. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
  95. Yoshihara, H. (2013), "Initiation and propagation fracture toughness of solid wood under the mixed mode I/II condition examined by mixed-mode bending test", Eng. Fract. Mech., 104, 1-15. https://doi.org/10.1016/j.engfracmech.2013.03.023
  96. Zeng, G., Yang, X., Yina, A. and Bai, F. (2014), "Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam", Constr. Build. Mater., 55, 323-332. https://doi.org/10.1016/j.conbuildmat.2014.01.058
  97. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms", Int. J. Fract., 189, 1-32 https://doi.org/10.1007/s10704-014-9959-z
  98. Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80 https://doi.org/10.1007/s10704-013-9876-6
  99. Zhou, X.P. and Wang, Y.T. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
  100. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001
  101. Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
  102. Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", Int. J. Rock Mech. Min. Sci., 80, 241-254. https://doi.org/10.1016/j.ijrmms.2015.09.006