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The use of data mining methods for dystocia detection in  
Polish Holstein-Friesian Black-and-White cattle

Daniel Zaborski1,*, Witold S. Proskura1, and Wilhelm Grzesiak1

Objective: The aim of this study was to verify the usefulness of artificial neural networks 
(ANN), multivariate adaptive regression splines (MARS), naïve Bayes classifier (NBC), general 
discriminant analysis (GDA), and logistic regression (LR) for dystocia detection in Polish 
Holstein-Friesian Black-and-White heifers and cows and to indicate the most influential 
predictors of calving difficulty.
Methods: A total of 1,342 and 1,699 calving records including six categorical and four con
tinuous predictors were used. Calving category (difficult vs easy or difficult, moderate and 
easy) was the dependent variable. 
Results: The maximum sensitivity, specificity and accuracy achieved for heifers on the in
dependent test set were 0.855 (for ANN), 0.969 (for NBC), and 0.813 (for GDA), respectively, 
whereas the values for cows were 0.600 (for ANN), 1.000 and 0.965 (for NBC, GDA, and 
LR), respectively. With the three categories of calving difficulty, the maximum overall accuracy 
for heifers and cows was 0.589 (for MARS) and 0.649 (for ANN), respectively. The most 
influential predictors for heifers were an average calving difficulty score for the dam’s sire, 
calving age and the mean yield of the farm, where the heifer was kept, whereas for cows, these 
additionally included: calf sex, the difficulty of the preceding calving, and the mean daily milk 
yield for the preceding lactation.
Conclusion: The potential application of the investigated models in dairy cattle farming 
requires, however, their further improvement in order to reduce the rate of dystocia mis
diagnosis and to increase detection reliability. 
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INTRODUCTION 

Dystocia (difficult calving) in dairy cattle, which is caused by a great number of direct and 
indirect factors, results in many adverse consequences [1,2]. One approach to its earlier de-
tection is the use of statistical methods, especially those from the field of data mining. These 
include artificial neural networks (ANN), multivariate adaptive regression splines (MARS) 
and naïve Bayes classifier (NBC), among others.
  The first method is based on the current knowledge of the biological nervous system and 
possesses some desired advantages over other classification procedures, such as: adaptability 
(through the learning process), robustness and insensitivity to errors [3]. A well-trained 
network is characterized by the ability to generalize the acquired knowledge to new cases, 
not used in the training process. On the other hand, MARS, which is based on generalized 
additive models, is built in a way similar to the recursive partitioning known from the classi-
fication and regression trees. It fits piece-wise linear basis functions to the data with each 
predictor range being divided into intervals using the so-called knots. The slope of the fitted 
basis functions between the knot pairs can vary, however, the continuity of the fitted function 
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is retained [4]. Finally, NBC considerably simplifies the learning 
process by the assumption about the independence of explan-
atory variables given the class. Although this assumption is 
often violated, NBC turns out to be very effective in practice, 
producing comparable or even better results than other more 
complex models [5]. The two more traditional statistical meth-
ods used for classification are linear discriminant analysis and 
logistic regression (LR), utilizing continuous and categorical 
predictors [6,7].
  So far, some data mining methods have already been used 
for dystocia detection in dairy cows. E.g. Zaborski and Grzesiak 
[8,9] applied ANN to dystocia detection in Polish Holstein-
Friesian Black-and-White cattle, Zaborski et al [10] used 
boosted classification trees for the same purpose, Morrison 
et al [11,12], Basarab et al [7], Arthur et al [13], and Johnson 
[14] applied linear discriminant function analysis for dystocia 
prediction in beef heifers, whereas Piwczyński et al [15] used 
decision trees for analyzing factors affecting dystocia in dairy 
cows.
  Therefore, the aim of the present study was to verify the 
usefulness of ANN, MARS, and NBC for dystocia detection 
in dairy heifers and cows and to compare them with more tra-
ditional methods, such as general discriminant analysis (GDA) 
and LR. The second goal was to identify the most significant 
predictors of calving difficulty in heifers and cows.

MATERIALS AND METHODS 

Since the present study involved only the analysis of produc-
tion records routinely collected on the farms, the approval 
from the Local Ethics Committee on Animal Research was 
not necessary. A total of 1,342 and 1,699 calving records of 
Polish Holstein-Friesian Black-and-White heifers and cows 
(from the second to sixth lactation inclusive), respectively, 
collected between 2002 and 2013 were used. The data were 
derived from four commercial dairy farms located in the West 
Pomeranian Province. The farms were selected based on their 
representativeness for the relatively high-yielding dairy herds 
in the region. The animals were kept in free-stall barns and 
fed a total mixed ration. An initial set of 1,656 and 2,136 in-
formation records (for heifers and cows, respectively) was 
reduced after editing for missing and erroneous values and 
outliers. Two continuous predictors were used for heifers: 
AGE, calving age (in months) and MEAN, the mean calv-
ing difficulty score for the daughters of the heifer’s sire (in 
scores). The values of this variable were calculated from the 
original scores (on a five-point scale, excluding abortions). 
In addition, three categorical predictors were included, i.e. 
FARM, the category of the farm where the heifer was kept 
(classified according to the mean milk production as “good” 
equal to or above 10,000 kg milk or “poor” below 10,000 kg 
milk), SEASON, calving season (AW, autumn-winter from 

October to March and SS, spring-summer from April to Sep-
tember) and SEX, calf sex (M, male, F, female; twin calvings 
were excluded from the analysis). For cows, two additional 
continuous and three categorical predictors were used, i.e. CI, 
preceding calving interval (in days), MDM, mean daily milk 
yield for the previous complete lactation (in kg), PCALV2 or 
PCALV3, preceding calving difficulty (difficult vs easy or dif-
ficult, moderate and easy, respectively), MAST, mastitis during 
pregnancy (healthy vs mastitic). The mean values and stan-
dard deviations for continuous predictors are presented in 
Supplementary Table S1, whereas the distributions of cate-
gorical variables are given in Supplementary Table S2.
  The output (dependent) variable was a calving difficulty 
class with two classification systems. The first one consisted of 
only two classes: a difficult calving (Diff) and an easy calving 
(Easy). The second one comprised three categories: difficult 
(Diff), moderate (Mod), and easy (Easy). Initially, calving 
difficulty was scored on a five-point scale: 1, an easy sponta-
neous calving, without any help from man; 2, a relatively easy 
calving, with help from man or mechanical equipment; 3, a 
complicated calving with the use of much more force than 
usual and/or veterinarian’s intervention; 4, a very complicated 
calving, including caesarean section, embryotomy and dam-
age to the cow or calf; and 5, an abortion. Subsequently, the 
ordinal variable was converted to a nominal one, by assigning 
levels 1 and 2 to the “Easy” category and 3 and 4 to the “Diff” 
category in the first classification system or by assigning level 
1 to the “Easy” category, 2 to the “Mod” category and 3 and 
4 to the “Diff” category in the second classification system. 
Category 5 (abortions) was excluded from the analysis. The 
distribution of calving difficulty categories for heifers and 
cows is presented in Supplementary Table S2. The incidence 
of dystocia was approximately 31.8% and 3.4% in the heifer 
and cow datasets.
  A holdout method of cross-validation was adopted in the 
present study. The whole dataset (1,342 and 1,699 records for 
heifers and cows, respectively) was randomly divided into 
three subsets: i) a training set (L; 50% calvings; 671 and 850 
records for heifers and cows, respectively), used for model 
preparation, ii) a validation set (V; 25% calvings; 335 and 425 
records for heifers and cows, respectively), utilized for the cur-
rent monitoring of training and prevention of over-fitting, and 
iii) a test set (T; 25% calvings; 336 and 424 records for heifers 
and cows, respectively), used for the verification of the detec-
tion performance of the models. In the case of MARS, NBC, 
GDA and LR, the V set was combined with the L set.
  The following types of ANN were investigated in the pres-
ent study: linear network (LN), multilayer perceptron with one 
hidden layer (MLP1), multilayer perceptron with two hidden 
layers (MLP2) and radial basis function (RBF) network. They 
were trained with the following algorithms: pseudoinversion 
(LN), back-propagation and conjugate gradient methods 
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(MLP1 and MLP2), k-means and k-nearest neighbor algo-
rithms (RBF). The ANN quality was assessed with the root-
mean-squared error (RMSE) on the V set. All neural models 
were constructed using Statistica Neural Networks software 
(v. 4.0F, StatSoft Inc., Tulsa, OK, USA). The best network from 
each category (with the lowest RMSE on the V set) was used 
for dystocia detection in heifers and cows on the T set.
  For the MARS analysis, the following general model was 
used: 
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software. Statistical significance was declared at p<0.05.

RESULTS 

Model quality for the two-class classification system
In the case of ANN for the heifer dataset, LN had an RMSE on 
the V set equal to 0.3891. The best MLP1 (RMSE = 0.3665) 
had a 5-2-1 structure (the number of neurons in the input, 
hidden and output layers, respectively), whereas the most ef-
fective MLP2 (RMSE = 0.3679) had a 5-3-6-1 structure. Finally, 
the structure of the best RBF network (RMSE = 0.3773) was 
5-23-1. On the other hand, the final MARS model consisted 
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of 28 basis functions and third-order interactions with the 
GCV error of 0.2606, while the significant effects for GDA 
and LR included those of AGE, MEAN, and FARM (Supple-
mentary Tables S3, S6). The estimated parameters of the 
classification functions are shown in Supplementary Table S5.
  For some models, the required assumptions were violated 
(the normal distribution of continuous predictors for NBC, 
and the normal distribution of residuals for GDA and LR). 
We found the highest sensitivity (Se; the percentage of cor-
rectly diagnosed dystocic animals) on the training set (0.8013) 
for MLP1 and it was significantly different from that for the 
non-neural classifiers (MARS, NBC, GDA, and LR). We re-
corded the highest specificity (Sp; the percentage of correctly 
diagnosed eutocic animals) (0.9927) for NBC and it differed 
significantly from that for all other models. We noted the 
highest accuracy (Acc; the percentage of correctly indicated 
animals from both classes) (0.8241) for MARS, but the only 
significant difference existed between MARS and NBC (Table 
1). Finally, we observed the lowest values of Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC) 
(–2,034.55 and –2,009.98, respectively) for LR, and the lowest 

G2 (399.33) for MLP1 (Table 2).
  For the cow dataset, LN had an RMSE equal to 0.1725. The 
best MLP1 (RMSE = 0.1663) and MLP2 (RMSE = 0.1646) had 
the 8-1-1 and 8-1-47-1 structures, respectively, whereas the 
structure of the most effective RBF network (RMSE = 0.1719) 
was 5-4-1. In the case of MARS, the final model consisted of 
407 basis functions and six-order interactions with the GCV 
error equal to 0.0458. The estimated GDA and LR parameters 
are presented in Supplementary Tables S3 and S6, respectively. 
In both cases, the effect of MEAN, SEX, and MDM was statis-
tically significant. The estimated parameters of the classification 
functions are shown in Supplementary Table S5. The assump-
tions that were not fulfilled included the normal distribution 
of continuous predictors for NBC and the normal distribu-
tion of residuals for GDA and LR. We found the highest Se 
on the training set of calving records (0.6512 to 0.6977) for 
ANN, although no statistically significant differences in Se 
existed among models. We observed the highest Sp (1.0000) 
for the non-neural classifiers, but a statistically significant 
difference in Sp occurred only between MLP2 and RBF. Fi-
nally, the MARS model yielded the best Acc (0.9812) and it 

Table 1. Probabilities for individual models on the training (n = 671), validation (n = 335), and test (n = 336) sets (two-class system, heifer dataset)

Model1) SET2) Se Sp Acc P(FP) P(FN) P(PSTP) P(PSTN)

LN L 0.7707 0.8219 0.8063 0.1781 0.2293 0.6556 0.8907
V 0.6875 0.8475 0.7940 0.1525 0.3125 0.6937 0.8438
L+V 0.7413a 0.8302a 0.8022ab 0.1698a 0.2587a 0.6676a 0.8746abc

T 0.7818ab 0.7832a 0.7827 0.2168a 0.2182ab 0.6370 0.8806b

MLP1 L 0.8146 0.8305 0.8256 0.1695 0.1854 0.6789 0.9106
V 0.7768 0.8251 0.8090 0.1749 0.2232 0.6905 0.8804
L+V 0.8013ab 0.8287a 0.8201b 0.1713a 0.1987ab 0.6828a 0.9006a

T 0.8545a 0.7743a 0.8006 0.2257a 0.1455a 0.6483 0.9162b

MLP2 L 0.8098 0.8219 0.8182 0.1781 0.1902 0.6667 0.9076
V 0.7589 0.8206 0.8000 0.1794 0.2411 0.6800 0.8714
L+V 0.7918ab 0.8215a 0.8121b 0.1785a 0.2082ab 0.6711a 0.8956ab

T 0.8455a 0.7655a 0.7917 0.2345a 0.1545a 0.6370 0.9105b

RBF L 0.8146 0.8155 0.8152 0.1845 0.1854 0.6601 0.9091
V 0.7589 0.8251 0.8030 0.1749 0.2411 0.6855 0.8720
L+V 0.7950b 0.8186a 0.8111b 0.1814a 0.2050b 0.6684a 0.8967ab

T 0.8273a 0.7566a 0.7798 0.2434a 0.1727a 0.6233 0.9000b

MARS L+V 0.6215c 0.9173b 0.8241b 0.0827b 0.3785c 0.7756a 0.8404bc

T 0.6545b 0.8628b 0.7946 0.1372b 0.3455b 0.6990 0.8369ab

NBC L+V 0.2397d 0.9927c 0.7555a 0.0073c 0.7603d 0.9383b 0.7395d

T 0.2818c 0.9690c 0.7440 0.0310c 0.7182c 0.8158 0.7349a

GDA L+V 0.6057c 0.9042b 0.8101b 0.0958b 0.3943c 0.7442a 0.8329c

T 0.7000b 0.8673b 0.8125 0.1327b 0.3000b 0.7196 0.8559b

LR L+V 0.6341c 0.9028b 0.8181b 0.0972b 0.3659c 0.7500a 0.8428bc

T 0.6909b 0.8673b 0.8095 0.1327b 0.3091b 0.7170 0.8522b

Se, sensitivity; Sp, specificity; Acc, accuracy; P(FP), false positive rate; P(FN), false negative rate; P(PSTP), a posteriori probability of true positives; P(PSTN), a posteriori probabil-
ity of true negatives.
1) Model: LN, linear networks; MLP1, multilayer perceptrons with one hidden layer; MLP2, multilayer perceptrons with two hidden layers; RBF, radial basis function networks; 
MARS, multivariate adaptive regression splines; NBC, naïve Bayes classifier; GDA, general discriminant analysis; LR, logistic regression.
2) Dataset: L, training set; V, validation set; T, test set.
a,b,c,d Values within columns (and within sets) with different superscripts differ significantly (p < 0.05).
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Table 2. Quality measures for the models predicting calving difficulty in heifers and cows (two- and three-class system)

Model1)
Heifers Cows

AIC BIC G2 AIC BIC G2

Two-class system

LN –1,887.16 –1,857.68 446.22 –4,461.26 –4,409.76 1,477.22

MLP1 –1,989.56 –1,915.85 399.33 –4,552.60 –4,495.95 1,527.00
MLP2 –1,908.76 –1,673.11 418.99 –4,257.93 –3,521.05 1,446.49
RBF –1,701.15 –1,166.05 421.34 –4,440.15 –4,311.38 1,690.78
MARS –1,729.76 –1,451.99 420.59 –912.21 1,108.09 70.24
NBC –1,632.62 –1,583.48 915.50 –4,285.61 –4,192.90 -2)

GDA –2,019.97 –1,970.83 456.65 –4,391.31 –4,298.59 -2)

LR –2,034.55 –2,009.98 429.82 –4,409.51 –4,363.15 -2)

Three-class system
LN –1,663.94 –1,575.49 1,395.31 –2,308.71 –2,125.43 1,003.61
MLP1 –1,638.86 –1,365.75 1,181.25 –1,650.23 –279.29 870.53
MLP2 –621.73 750.33 1,172.18 –1,989.35 –1,064.54 892.54
RBF –1,561.60 –1,219.08 1,282.70 –1,171.75 544.35 960.53
MARS –1,589.96 –1,425.34 1,104.91 –1,524.42 –202.24 894.38
NBC –1,734.65 –1,660.94 1,527.62 –2,177.10 –2,038.03 1,347.23
GDA –1,714.63 –1,640.93 1,218.13 –2,361.01 –2,206.49 972.12

AIC, Akaike information criterion; BIC, Bayesian information criterion; G2, G-squared statistic.
1) Model:  LN, linear networks; MLP1, multilayer perceptrons with one hidden layer; MLP2, multilayer perceptrons with two hidden layers; RBF, radial basis function networks; MARS, multivariate 
adaptive regression splines; NBC, naïve Bayes classifier; GDA, general discriminant analysis; LR, logistic regression.
2) Values could not be calculated.

Table 3. Probabilities for individual models on the training (n = 850), validation (n = 425), and test (n = 424) sets (two-class system, cow dataset)

Model1) SET2) Se Sp Acc P(FP) P(FN) P(PSTP) P(PSTN)

LN L 0.7333 0.6439 0.6471 0.3561 0.2667 0.0701 0.9851
 V 0.6154 0.6359 0.6353 0.3641 0.3846 0.0506 0.9813
 L+V 0.6977 0.6412 0.6431ab 0.3588 0.3023 0.0636a 0.9838
 T 0.4667 0.6675a 0.6604a 0.3325a 0.5333 0.0490 0.9715
MLP1 L 0.7333 0.6220 0.6259 0.3780 0.2667 0.0663 0.9846
 V 0.6154 0.6578 0.6565 0.3422 0.3846 0.0537 0.9819
 L+V 0.6977 0.6339 0.6361ab 0.3661 0.3023 0.0624a 0.9836
 T 0.4667 0.6504a 0.6439a 0.3496a 0.5333 0.0467 0.9708
MLP2 L 0.7000 0.6634 0.6647 0.3366 0.3000 0.0707 0.9837
 V 0.5385 0.6408 0.6376 0.3592 0.4615 0.0452 0.9778
 L+V 0.6512 0.6558a 0.6557a 0.3442a 0.3488 0.0619a 0.9818
 T 0.6000 0.6479a 0.6462a 0.3521a 0.4000 0.0588 0.9779
RBF L 0.7667 0.5890 0.5953 0.4110 0.2333 0.0639 0.9857
 V 0.5385 0.6286 0.6259 0.3714 0.4615 0.0438 0.9774
 L+V 0.6977 0.6023b 0.6055b 0.3977b 0.3023 0.0577a 0.9828
 T 0.4000 0.6235a 0.6156a 0.3765a 0.6000 0.0375 0.9659
MARS L+V 0.4419 1.00003) 0.9812d 0.00003) 0.5581 1.0000b 0.9809
 T 0.00003) 0.9878b 0.9528b 0.0122b 1.00003) 0.0000 0.9642
NBC L+V 0.00003) 1.00003) 0.9663c4) 0.00003) 1.00003) -5) 0.9663
 T 0.00003) 1.00003) 0.9646b4) 0.00003) 1.00003) -5) 0.9646
GDA L+V 0.00003) 1.00003) 0.9663c4) 0.00003) 1.00003) -5) 0.9663
 T 0.00003) 1.00003) 0.9646b4) 0.00003) 1.00003) -5) 0.9646
LR L+V 0.00003) 1.00003) 0.9663c4) 0.00003) 1.00003) -5) 0.9663
 T 0.00003) 1.00003) 0.9646b4) 0.00003) 1.00003) -5) 0.9646

Se, sensitivity; Sp, specificity; Acc, accuracy; P(FP), false positive rate; P(FN), false negative rate; P(PSTP), a posteriori probability of true positives; P(PSTN), a posteriori probability of true negatives.
1) Model: LN, linear networks; MLP1, multilayer perceptrons with one hidden layer; MLP2, multilayer perceptrons with two hidden layers; RBF, radial basis function networks; MARS, multivariate 
adaptive regression splines; NBC, naïve Bayes classifier; GDA, general discriminant analysis; LR, logistic regression.
2) Dataset: L, training set; V, validation set; T, test set.
3) Values of the test statistic could not be calculated.
4) Values of the test statistic could not be calculated for the comparisons between NBC, GDA, and LR.
5) P(PSTP) values could not be calculated.
a,b,c,d Values within columns (and within sets) with different superscripts differ significantly (p < 0.05).

differed significantly from that for the rest of the investigat-
ed classifiers (Table 3). We found the lowest AIC and BIC 

(–4,552.60 and –4,495.95, respectively) for MLP1 and the 
lowest G2 (70.24) for MARS (Table 2).
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Table 4. Proportions of correctly classified cases for the three categories of calving difficulty in heifers and cows (three-class system)

Model1) SET2) Heifers Cows

Easy Mod Diff Acc Easy Mod Diff Acc

LN L 0.2844 0.5242 0.8195 0.5365 0.6395 0.7023 0.00003) 0.6494
 V 0.2909 0.6106 0.7500 0.5522 0.6022 0.6926 0.00003) 0.6329
 L+V 0.2866ab 0.5512c 0.7950c 0.5417a 0.6275a 0.6990bc 0.00003) 0.6439ab

 T 0.2432ab 0.4783ad 0.8273 0.5149 0.6786a 0.6526a 0.00003) 0.6415
MLP1 L 0.2982 0.7661 0.7659 0.6140 0.6526 0.7591 0.00003) 0.6847
 V 0.3000 0.7257 0.7143 0.5821 0.6630 0.7143 0.00003) 0.6706
 L+V 0.2988a 0.7535a 0.7476abd 0.6034b 0.6560abc 0.7437ab 0.00003) 0.6800c

 T 0.2072abcd 0.7130bc 0.8000 0.5744 0.6122a 0.6995a 0.00003) 0.6344
MLP2 L 0.3303 0.6895 0.8000 0.6066 0.6526 0.7386 0.00003) 0.6741
 V 0.3182 0.6726 0.7232 0.5731 0.6575 0.7229 0.00003) 0.6729
 L+V 0.3262abc 0.6842b 0.7729bc 0.5954b 0.6542abc 0.7332bc 0.00003) 0.6737bc

 T 0.2613ac 0.6696b 0.8091 0.5804 0.6582a 0.6854a 0.00003) 0.6486
RBF L 0.2936 0.7056 0.7415 0.5827 0.6658 0.7091 0.00003) 0.6647
 V 0.3182 0.6549 0.6161 0.5313 0.6077 0.6926 0.00003) 0.6353
 L+V 0.3018ab 0.6898ab 0.6972a 0.5656ab 0.6471abc 0.7034c 0.00003) 0.6549bc

 T 0.2523ac 0.5826abd 0.7636 0.5327 0.6633a 0.6808a 0.00003) 0.6486
MARS L+V 0.3659bc 0.6648b 0.7886c 0.6064b 0.7094b 0.7854a 0.11633) 0.7294d

 T 0.2883ac 0.6348ab 0.8455 0.5893 0.6633a 0.6714a 0.06673) 0.6462
NBC L+V 0.1677d 0.8283d 0.7066ad 0.5746ab 0.3102d 0.8927d 0.00003) 0.6063a

 T 0.1081bd 0.8000c 0.7636 0.5595 0.3622b 0.8779b 0.00003) 0.6085
GDA L+V 0.4116cd 0.5235c 0.7666bcd 0.5636ab 0.6292c 0.7139bc 0.00003) 0.6525bc

 T 0.3784cd 0.4522d 0.7818 0.5357 0.6888a 0.6526a 0.00003) 0.6462

Easy, easy calving; Mod, moderate calving; Diff, difficult calving; Acc, accuracy. 
1) Model: LN, linear networks; MLP1, multilayer perceptrons with one hidden layer; MLP2, multilayer perceptrons with two hidden layers; RBF, radial basis function networks; 
MARS, multivariate adaptive regression splines; NBC, naïve Bayes classifier; GDA, general discriminant analysis; LR, logistic regression.
2) Dataset: L, training set; V, validation set; T, test set.
3) Values of the test statistic could not be calculated.
a,b,c,d Values within columns (and within sets) with different superscripts differ significantly (p < 0.05).

Model quality for the three-class classification system
In the case of the three-class system for the calving records of 
heifers, an RMSE for LN was 0.4296. The best MLP1 (RMSE 
= 0.4170) had a 5-6-3 structure, whereas MLP2 with the best 
classification performance (RMSE = 0.4171) had a 4-15-15-
3 structure. The RMSE for the most effective RBF network (a 
5-9-3 structure) was 0.4260. On the other hand, the final MARS 
model consisted of ten basis functions and second-order in-
teractions (GCV = 0.5236), while the effect of AGE, MEAN, 
and FARM was statistically significant for GDA (Supplemen-
tary Table S4). The estimated parameters of the classification 
functions are shown in Supplementary Table S5. However, 
none of the required assumptions for GDA or NBC was ful-
filled. We found the highest Acc on the L+V set (0.6064) for 
MARS, but the differences in Acc for individual models were 
generally small and often non-significant (Table 4). We ob-
served the lowest AIC and BIC values (–1,734.65 and –1,660.94, 
respectively) for NBC and the lowest G2 value (1,104.91) for 
MARS (Table 2).
  For the cow dataset and the three-class system, LN had an 
RMSE on the V set equal to 0.3928. The best MLP1 (RMSE 
= 0.3832) and MLP2 (RMSE = 0.3834) had the 11-20-3 and 

11-10-5-3 structures, respectively, whereas the structure of 
the best RBF network (RMSE = 0.3943) was 11-39-3. In the 
case of MARS, the final model consisted of 143 basis func-
tions and five-order interactions (GCV = 0.4472), while the 
significant predictors for GDA included AGE, MEAN, FARM, 
SEX, MDM, and PCALV (Supplementary Table S4). The 
estimated parameters of the classification functions are shown 
in Supplementary Table S5. Some assumptions for GDA (the 
normal distribution of residuals) and NBC were not ful-
filled. We found the highest Acc on the L+V set for MARS 
(0.7294) and it differed significantly from that for all other 
classifiers (Table 4). We recorded the lowest AIC and BIC 
values (–2,361.01 and –2,206.49, respectively) for GDA and 
the smallest G2 (870.53) for MLP1 (Table 2).

The most influential predictors
In the two-class system for the heifer dataset, the most impor-
tant predictor was MEAN followed by AGE, FARM, SEASON, 
and SEX (Table 5). Almost the same order of predictor im-
portance existed in the three-class system. The only difference 
was that FARM was followed by AGE and that SEX was ex-
cluded from the set of predictors for MLP2 due to its error 
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ratio below 1.0 (Table 5). For the cow dataset, the most in-
fluential predictor in the two-class system was SEX followed 
by MEAN, MDM, PCALV2, SEASON, AGE, MAST, CI, and 
FARM (Table 5). A similar order of important predictors was 
present for the three-class system, where MEAN was the most 
influential input variable followed by SEX, PCALV3, AGE 
(equally important), SEASON, MDM, FARM, CI, and MAST 
(Table 5). 

Detection performance for the two-class classification 
system
We observed the highest Se on the heifer T dataset (0.8545) 

for MLP1 and it differed significantly from that for MARS 
(0.6545), NBC (0.2818), GDA (0.7000), and LR (0.6909). We 
found the greatest Sp (0.9690) for NBC and it was significantly 
different from that for all other models (Table 1). The highest 
Acc (0.8125) was characteristic of GDA; however, no statisti-
cally significant differences existed among different classifiers. 
On the other hand, NBC and MLP1 had the lowest proba-
bility of false positives (P[FP]) (0.0310) and false negatives 
(P[FN]) (0.1455), respectively. Finally, we found the highest 
a posteriori probability of true positives (P[PSTP]) (0.8158) 
for NBC and the greatest a posteriori probability of true neg-
atives (P[PSTN]) (0.9162) for MLP1; however, no significant 
differences in the values of the former occurred. The receiver 
operating characteristic (ROC) curve analysis revealed that 
all classifiers had very similar areas under the curve (AUC) 
(0.86 to 0.87) (Figure 1).
  For the cow dataset, we found the highest Se (0.6000) for 
MLP2; however, no significant differences in the values of this 
probability existed. We recorded the greatest Sp (1.0000) for 
NBC, GDA, and LR (Table 3), but the only significant differ-
ence occurred between MARS and ANN. The three above-
mentioned classifiers (NBC, GDA, and LR) also had the highest 
Acc (0.9646), which differed significantly from that for ANN, 
and the null P(FP). The lowest P(FN) (0.4000) and the highest 
P(PSTP) (0.0588) and P(PSTN) (0.9779) were all character-
istic of MLP2, however, there were no significant differences 
in these values among different classifiers. The ROC analysis 
showed that the RBF network had the lowest AUC (0.51) and 
GDA and LN had the highest one (0.69) (Figure 2).

Detection performance for the three-class classification 
system
We found the highest proportions of correctly diagnosed easy, 
moderate and difficult calvings in heifers obtained on the 
T set for GDA (0.3784), NBC (0.8000), and MARS (0.8455), 
respectively (Table 4). The value for GDA differed signifi-
cantly from that for LN (0.2432), whereas the proportion for 
NBC was significantly higher that that for LN (0.4783), MLP2 
(0.6696), RBF (0.5826), MARS (0.6348), and GDA (0.4522). 
No significant differences in the proportions of correctly in-
dicated difficult calvings were present among models. A similar 
situation occurred for Acc, whose highest value was charac-
teristic of MARS (0.5893), but, again, no significant differences 
in these probabilities existed.
  For the cow dataset, we found the highest proportions of 
correctly indicated easy and moderate calvings on the T set 
for GDA (0.6888) and NBC (0.8779), respectively (Table 4). 
The value for GDA differed significantly from that for NBC 
(0.3622), whereas the proportion of correctly detected mod-
erate calvings for NBC was significantly different from those 
for all other classifiers. For the difficult category, only MARS 
could correctly detect several calvings (0.0667). For all other 

Table 5. The most influential predictors of calving difficulty for heifers and cows

Variable1) LN MLP1 MLP2 RBF MARS GDA LR

Heifers, two-class system
Mean 1 1 1 1 1 1 1
Farm 2 3 3 3 4 2 2
Age 3 2 2 2 2 3 3
Season 4 4 4 4 5 4 4
Sex 5 5 5 5 3 5 5

Heifers, three-class system
Mean 1 1 1 1 1 1 -
Farm 2 2 2 3 2 2 -
Age 3 3 3 2 2 3 -
Season 4 4 4 5 3 4 -
Sex 5 5 Ex 4 4 5 -

Cows, two-class system
Mean 3 1 4 Ex 3 2 2
Farm 9 Ex Ex Ex 8 8 7
Age 7 5 5 Ex 1 7 8
Season 8 6 3 3 6 6 6
Sex 1 4 2 1 2 1 1
MDM 2 2 6 Ex 4 3 3
MAST 4 8 8 2 9 4 4
PCALV 5 7 1 4 7 5 5
CI 6 3 7 5 5 9 9

Cows, three-class system
Mean 1 1 1 3 3 1 -
Farm 5 6 6 6 6 5 -
Age 3 5 3 5 1 3 -
Season 9 3 4 1 7 8 -
Sex 2 4 5 2 5 2 -
MDM 6 7 7 7 2 4 -
MAST 8 8 9 9 8 7 -
PCALV 4 2 2 4 2 6 -
CI 7 9 8 8 4 9 -

LN, linear networks; MLP1, multilayer perceptrons with one hidden layer; MLP2, 
multilayer perceptrons with two hidden layers; RBF, radial basis function networks; 
MARS, multivariate adaptive regression splines; GDA, general discriminant analy-
sis; LR, logistic regression.
1) Mean, mean calving difficulty for the dam’s sire; Farm, herd milk yield category; 
AGE, calving age; Season, calving season; Sex, calf sex; MDM, mean daily milk 
yield for the previous lactation; MAST, mastitis during pregnancy; PCALV, preced-
ing calving difficulty; CI, preceding calving interval; Ex, excluded.
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classifiers, this proportion was null. Finally, the highest Acc 
on the T set was characteristic of MLP2 and RBF (0.6486), 
although no significant differences in this probability were 
present between different models.

DISCUSSION 

Model quality
In the quality evaluation of all the models for the two-class 
system, Se, Sp, and Acc were used. For the three-class system, 

Figure 1. The ROC curves for different models (two-class system, heifer dataset). ROC, receiver operating characteristic; LN, linear networks; MLP1, multilayer perceptrons 
with one hidden layer; MLP2, multilayer perceptrons with two hidden layers; RBF, radial basis function networks; MARS, multivariate adaptive regression splines; NBC, naïve 
Bayes classifier; GDA, general discriminant analysis; LR, logistic regression.

Figure 2. The ROC curves for different models (two-class system, cow dataset). ROC, receiver operating characteristic; LN, linear networks; MLP1, multilayer perceptrons 
with one hidden layer; MLP2, multilayer perceptrons with two hidden layers; RBF, radial basis function networks; MARS, multivariate adaptive regression splines; NBC, naïve 
Bayes classifier; GDA, general discriminant analysis; LR, logistic regression.
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the percentage of correctly diagnosed animals from each cate-
gory and the overall Acc were calculated. AIC, BIC, and G2 
were also used for all the models. Their lower values indicated 
a better model.
  Of the different ANN (LN, MLP1, MLP2, and RBF) used 
for the classification of calvings in heifers, the lowest RMSE 
was characteristic of MLP1 both for the two-class and three-
class system, although, in the latter case, this value was almost 
the same as for MLP2. The MLP1 network also had the lowest 
G2 value for the two-class system indicating a good fit to the 
training data, although its AIC and BIC were higher than those 
for LR due to the greater complexity of the neural model. 
We observed the lowest values of these criteria in the three-
class system for NBC, which indicated its superior quality 
in comparison with other models, although the smallest G2 
was characteristic of MARS.
  In the case of the two-class classification system, Se (i.e. the 
percentage of correctly diagnosed dystocic heifers) on the L 
and V sets obtained for all ANN types (excluding LN) in the 
present study (0.7918 to 0.8013) was approximately 10.0% 
lower than that reported by Zaborski and Grzesiak [9] in their 
work on dystocia detection in Polish Holstein-Friesian Black-
and-White heifers. Also, Sp and Acc (0.8186 to 0.8287 and 
0.8111 to 0.8201, respectively) were approximately 7.0% lower 
compared with the values presented in the aforementioned 
study, in which LN were not investigated. In a similar research 
on dystocia detection in dairy heifers by means of boosted 
classification trees [10], Se and Acc on the training set were 
also higher (0.894 and 0.935, respectively) in comparison with 
the maximum values obtained in the present work, apart 
from Sp, which was 5.0% lower. However, in the case of GDA, 
Basarab et al [7] and Arthur et al [13] reported lower Se (0.222 
to 0.471 and 0.255 to 0.400, respectively), with higher Sp (0.944 
to 0.980 and 0.967 to 0.980, respectively) and Acc (0.852 to 
0.917 and 0.846 to 0.885, respectively) investigating dystocia 
detection in beef heifers using linear discriminant function 
analysis.
  For the three-class system, the overall Acc (0.5417 to 0.6034) 
in the current work was relatively high. In a similar study on 
dystocia in Hereford heifers [14], the Acc for the five categories 
of calving difficulty ranged from 0.500 to 0.602 (depending 
on the set of predictors) and increased to 0.855 when only 
two categories were distinguished.
  Of the different ANN types (LN, MLP1, MLP2, and RBF) 
used in our study for the classification of calving difficulty 
records in cows, the lowest RMSE was characteristic of MLP2 
and MLP1 for the two-class and three-class systems, respec-
tively, although in the latter case, the RMSE values were very 
similar between multilayer perceptrons. In the case of the 
three-class system, MLP1 also had the lowest G2 value indi-
cating its good fit to the data, however, GDA had the lowest 
values of AIC and BIC due to its lower complexity compared 

with the MLP1 model. In the two-class classification system, 
we recorded the lowest values of AIC and BIC for MLP1 and 
the smallest G2 for MARS, which shows that MLP1 was quite 
effective in predicting dystocia despite its relatively high com-
plexity.
  In this system, Se on the L and V sets obtained for MLP 
(0.6512 to 0.6977) was lower than that (approximately 0.750) 
reported by Zaborski and Grzesiak [8]; however, Se for the 
RBF network (0.6977) in the present work was approximately 
10.0% higher. Also, Sp and Acc (0.6023 to 0.6558 and 0.6055 
to 0.6557, respectively) were approximately 10.0% to 15.0% 
lower than those in the study by Zaborski and Grzesiak [8], 
except for the RBF network, for which they were slightly 
higher. The maximum Se for all classifiers in the present study 
(0.6977) was approximately 18.0% lower than that reported 
by Zaborski et al [10], who applied boosted classification trees 
to dystocia detection in dairy cows, however, Sp and Acc 
(1.0000 and 0.9812, respectively) were almost 15.0% higher. 
Also, Acc obtained by Piwczyński et al [15], who used deci-
sion trees for dystocia analysis in dairy cattle, was generally 
lower (0.615) than that in the present work. On the other hand, 
Se for GDA in the current study was null, whereas it ranged 
from 0.157 to 0.782 or even 0.867 in similar reports [8,11,12], 
but Sp and Acc were higher (1.0000 and 0.9663, respectively) 
in comparison with the aforementioned works (0.985 and 0.917 
as well as 0.812 to 0.865 and 0.824 to 0.851, respectively). 
  The last considered model in terms of quality measures was 
LR. In the study by Thirunavukkarasu and Kathiravan [6] on 
the prediction of conception difficulties in cows and buffaloes 
using LR, Se, Sp, and Acc on the training set were 0.988, 0.987, 
and 0.988, respectively, whereas in the work by Liu et al [16] 
on lameness detection in cows, the respective values for the 
leave-one-out cross-validation were in the ranges of 0.900 to 
0.995, 0.190 to 1.000 and 0.730 to 0.996. Although, it is not 
possible to directly compare the above-mentioned results with 
those of the present study, they show, in general, the effective-
ness of such models in solving various breeding issues.
  In the case of the three-class system for the calving records 
of cows, the overall accuracy (0.6063 to 0.7294) in our study 
was relatively high. However, the results produced by GDA 
and LR for the cow dataset in the current work were clearly 
inferior to those obtained by means of other data mining 
methods (except for NBC, whose quality measures were also 
low) in the two-class system, whereas the values recorded for 
GDA in the three-class system were generally similar to those 
for other types of classifiers.
 
The most influential predictors
Besides evaluating the detection abilities of the models on the 
T set, the most important predictors of calving difficulty were 
also identified using different criteria for different classifiers 
(an error ratio, the number of references to each predictor 
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and the significance of the F and Wald statistic for ANN, 
MARS, GDA, and LR, respectively). Each of these methods 
allowed for the ordering of predictor variables according to 
their relative importance (an error ratio, the number of ref-
erences to each predictor) or statistical significance (F and 
Wald statistics). The higher the error ratio and the number 
of references and the lower the p-values for the F and Wald 
statistics, the more important the predictor variable. Finally, 
predictor importance for all model types was presented as a 
rank (the lower the rank, the more important the predictor) 
and the five most influential predictors were further consid-
ered. However, such an analysis was not possible for NBC.
  The most influential predictor for the heifer dataset was 
MEAN (the mean calving difficulty for the daughters of the 
heifer’s sire). The aim of including this variable in the mod-
els was to reflect the influence of the heifer’s sire on calving 
difficulty as part of the maternal effect, since the dam’s sire is 
partially responsible for her characteristics such as pelvic size, 
gestation length and body weight at calving [17]. AGE was on 
the second or third position for the heifer dataset, and on the 
second or sixth place for the cow dataset. This result is some-
what different from the sequence of input variables presented 
by Zaborski and Grzesiak [9], where it was ranked sixth or 
tenth (for heifers and cows, respectively). Also, in the work by 
Zaborski et al [10], it was ranked third, after gestation length 
and body condition score. On the other hand, Piwczyński et 
al [15] showed that lactation number (related to calving age) 
was the main factor discriminating between dystocic and 
eutocic animals and served as an input variable on which the 
first split in the classification tree was based.
  In general, the greatest difference in dystocia score exists 
between heifers and cows [2,18], with an optimal age at first 
calving in dairy breeds being 22 to 24 months, which ensures 
optimum subsequent performance and ease of parturition 
[19], although a recent study on seasonally calving Holstein-
Friesian heifers [20] showed that the optimum age at first 
calving in terms of calving difficulty was 25 to 27 months. 
Also, in the study by Atashi et al [18], the need for assistance, 
the use of considerable force and extremely difficult calvings 
with caesarean section, were more frequent among younger 
animals. Increasing age at first calving also significantly de-
creased the probability of calving difficulty. A significant effect 
of parity and calving age on the risk of dystocia or an assisted 
calving was confirmed by Mee et al [21], who found that the 
probability of an assisted calving increased linearly in heifers 
with a decreasing age at first calving in relation to the median 
age in the analyzed sample. Also, in the study by Eaglen and 
Bijma [22] on Dutch Holstein-Friesians, calving difficulty 
increased significantly with an increasing age of the dam, 
however, the effect of dam’s age was reduced by approximately 
75.0% after the inclusion of gestation length in a statistical 
model, showing that it is mediated by longer gestations in older 

animals and may also be related to the lower fertility resulting 
from prolonged calving intervals. Finally, we would like to add 
that not all authors observed a significant effect of lactation 
number or calving age on dystocia incidence.
  The third important predictor in the case of heifers (and 
the fifth or last one in the case of cows) was FARM (the mean 
milk production of the farm, where the animal was kept). The 
role of this predictor was to reflect the influence of herd-level 
factors on the occurrence of difficult calving in the heifer or 
cow. In the study by Gröhn et al [23] on the effects of host 
features, production and disease factors on the risk of repro-
ductive disorders in dairy cattle, a higher herd milk yield in 
the current lactation was associated with an increased risk of 
dystocia. However, it should be mentioned that the four farms 
selected for the present study were characterized by relatively 
high milk production, which could have affected the ordering 
of predictor variables. Inclusion of a larger number of herds, 
also with lower milk production, would be warranted in the 
future research. The fourth (or third or fifth in the case of 
cows) influential input variable was calving season (SEASON). 
In the study on dystocia detection in dairy heifers [9], this 
predictor was ranked lower, whereas for cows [8], it was 
ranked relatively higher. On the other hand, Zaborski et al 
[10] found that calving season was located near the end of the 
sequence of significant predictors both for heifers and cows, 
similarly as Piwczyński et al [15]. Generally, a higher incidence 
of dystocia in our geographical location occurs during autumn 
and winter, which can be attributed to the greater extent of 
supervision by a farmer, an increased gestation length, calf 
birth weight and stillbirth rate as well as less physical exercise 
during this period [21]. In a recent work by Fiedlerová et al 
[24], a higher frequency of difficult calvings was observed in 
the spring (especially in April) and slightly lower during the 
autumn. A significant effect of calving season has also been 
reported by other authors [22], although it has not been proven 
in some studies [25].
  The least influential predictor for heifers and one of the 
most important ones for cows was SEX (calf sex). Although 
it is currently possible to determine calf sex relatively early (55 
to 60 dpc) using ultrasonography, this method is not routinely 
used for this purpose in dairy cattle farming in our country. 
Therefore, the inclusion of this predictor in the models can 
be problematic in practice. However, it was finally considered 
in the analysis for theoretical reasons. According to Atashi et 
al [18], the male sex was associated with a higher incidence 
of dystocia in Holstein cows and its increased risk occurred 
in cows giving birth to male twins. However, we did not in-
vestigate the effect of twin calvings in our study, due to the 
very low frequency of this calving category. On the other hand, 
Dhakal et al [26] found that female calves had a significantly 
lower probability of calving difficulty compared with male 
calves, but only for primiparous cows. In general, male calves 



1710    www.ajas.info

Zaborski et al (2018) Asian-Australas J Anim Sci 31:1700-1713

have higher birth weights than female calves, which may 
result from longer gestations and higher androgenic hor-
mone production [27]. A male sex is also associated with 
greater perinatal mortality [21]. Many other authors (e.g. 
Atashi et al [2]) confirmed the significant effect of calf sex 
on dystocia, although some investigators did not observe 
such a relationship.
  The most important predictors for cows (apart from those 
already discussed for heifers) included the mean daily milk 
yield for the preceding lactation (MDM), and the course of 
previous calving (with two or three categories, depending on 
the classification system, PCALV). Mastitis during pregnancy 
(MAST) and the length of CI were the least influential pre-
dictors. In the case of MDM, it is not entirely clear whether 
high-yielding cows have a greater risk of dystocia [28]. Usu-
ally, an opposite association is reported in the literature, i.e. a 
detrimental effect of dystocia on productivity [1,2]. However, 
a different relationship exists for PCALV, since cows experi-
encing difficult parturition have a greater chance of dystocia 
and stillbirth at subsequent calving. For instance, Mee et al 
[21] found that cows with a history of dystocia at preceding 
calving had a 1.65 and 2.90 times higher risk of calving assis-
tance and dystocia, respectively, during subsequent parturition. 
According to these authors, this result indicates that some 
animals are more prone to dystocia than others. A relatively 
high genetic correlation (0.70 to 0.80) between calving diffi-
culty at the first and second parturition additionally supports 
this association. Somewhat different results were obtained by 
Barrier [17], who investigated two dairy herds in the UK. In 
the first one, the author found that the assistance (by the farmer 
or veterinarian) at the first calving did not result in the higher 
odds of such assistance at the second calving. However, assis-
tance at the second calving was associated with a 3.4 times 
higher risk of assisted third calving and a 9.6 times greater 
chance of veterinary-assisted third parturition. In the second 
(smaller) herd, however, veterinary assistance at the first calv-
ing did result in a 5.3 times higher risk of assistance at the 
second calving, whereas assistance at the second parturition 
did not increase the chance of help requirement at the third 
calving. A similar effect was observed by Arthur et al [13], who 
found that Angus heifers with dystocia had significantly higher 
chances of its reoccurrence at the second calving.
  The last two considered predictors of calving difficulty in 
cows were MAST and CI. MAST concerns the occurrence of 
mastitis during pregnancy, however, Gröhn et al [29] in their 
study on the influence of various diseases on culling decisions 
did not find any significant effect of mastitis incidence on the 
risk of dystocia. Although some diseases (e.g. milk fever, fatty 
liver syndrome) may affect the chance of calving difficulty, 
usually an opposite relationship is described in the literature, 
i.e. an increased risk of mastitis resulting from dystocia.
  Finally, CI was located at the bottom of the predictor hierar-

chy in the studies by Zaborski and Grzesiak [8] and Zaborski 
et al [10]. Contrary to that finding, Fiedlerová et al [24] found 
a significant linear relationship between the length of CI and 
the occurrence of dystocia at subsequent parturition. The risk 
of difficult calving increased with an increasing CI but, accord-
ing to the cited authors, it could be substantially reduced by 
the appropriate mating decisions and the avoidance of too late 
services. However, we would like to emphasize that there are 
relatively few reports on the association between preceding 
CI and dystocia risk, and usually an opposite relation is de-
scribed, i.e. a negative effect of a difficult calving on fertility 
traits [1].

Detection performance of the models
In the assessment of the detection performance of all the 
models for the two-class system, P(FP), P(FN), P(PSTP), and 
P(PSTN) were used apart from Se, Sp, and Acc. In addition, 
the ROC curves and AUC were determined with the higher 
AUC values indicating a model with greater discrimination 
power. For the three-class system, only the percentages of cor-
rectly classified cases from each class and the overall Acc were 
computed.
  In the case of the two-class system for the heifer dataset, the 
Se on the T set for all ANN (except for LN) obtained in the 
present study (0.8273 to 0.8545) was higher than that (0.750 
to 0.833) reported by Zaborski and Grzesiak [9], in their work 
on dystocia detection in dairy heifers, in which LN were not 
analyzed. However, Sp (0.7566 to 0.7743) and Acc (0.7798 to 
0.8006) were lower than the values in the aforementioned 
study (0.820 to 0.876 and 0.822 to 0.861, respectively). Also, 
Se for all ANN (0.7818 to 0.8545) in the present work was 
higher than that (0.750) obtained by Zaborski et al [10], who 
used boosted classification trees for dystocia detection in dairy 
heifers, however, Se for the remaining classifiers (0.2818 to 
0.7000) was lower. On the other hand, Sp for all the models 
(0.7566 to 0.8673), except for NBC (0.9690), as well as Acc 
(0.7440 to 0.8125) were lower than those (0.920 and 0.894, 
respectively) reported by Zaborski et al [10]. The value of P(FP) 
(i.e. the probability of misclassification of an eutocic animal 
as a dystocic one) in the present work was, in general, higher 
(0.0310 to 0.2434) compared with the value (0.080) obtained 
by Zaborski et al [10], whereas P(FN) was lower for all ANN 
types (0.1455 to 0.2182) and higher for the remaining classi-
fiers (0.3000 to 0.7182). Finally, the reliability of detection made 
by the models in the present work (expressed as P[PSTP] and 
P[PSTN]) was generally higher (0.6233 to 0.8158) for the for-
mer and lower (0.7349 to 0.9162) for the latter compared with 
the results of Zaborski et al [10]. Moreover, the Se for GDA in 
the current research (0.7000) was approximately twice higher 
than the maximum values in the similar studies on dystocia 
detection in beef heifers [7,13], whereas Sp (0.8673) and Acc 
(0.8125) were within the ranges presented in these studies. 
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Also, the P(FP) and P(FN) values were comparable with those 
reported by Basarab et al [7] and Arthur et al [13] (0.013 to 
0.266 and 0.097 to 0.274 as well as 0.677 to 0.947 and 0.600 to 
1.000, respectively), and the reliability of detection performed 
by GDA and reflected in the P(PSTP) and P(PSTN) values 
was relatively high in comparison with other authors (0.100 
to 0.538 and 0.877 to 0.940, respectively, for Basarab et al [7] 
as well as 0.000 to 0.231 and 0.881 to 0.927, respectively, for 
Arthur et al [13]). We would like to emphasize that the most 
important indicator of the detection performance of the model 
is its Se on the T set, i.e. its ability to correctly indicate dystocic 
animals, and this value was quite high in our study compared 
with others. 
  The probabilities of correct detection for each of the three 
distinguished categories of calving difficulty and the overall 
Acc on the T set were acceptable (especially for the difficult 
class). Also, the AUC values obtained in the present study were 
high (approximately 0.86) and comparable with those reported 
by others [9,10] for dystocia detection in dairy heifers using 
ANN and boosted classification trees (0.85 to 0.89 and 0.81, 
respectively). 
  In the case of the two-class system for the cow dataset, the 
Se, Sp, and Acc on the T set for all ANN types (excluding LN) 
in the present study (0.4000 to 0.6000, 0.6235 to 0.6504, and 
0.6156 to 0.6462, respectively) were generally lower (especially 
for the multilayer perceptrons) than the values reported by 
Zaborski and Grzesiak [8] in their work on dystocia detec-
tion in dairy cows (0.667 to 0.800, 0.611 to 0.805, and 0.615 to 
0.805, respectively). Also, the maximum Se achieved on the 
T set for all the models (0.6000) was 15.0% lower than that 
in the study by Zaborski et al [10] on the use of boosted classi-
fication trees for dystocia detection in dairy cows (0.750), 
whereas the maximum Sp (1.0000) and Acc (0.9646) were 
approximately 20.0% higher. On the other hand, the values of 
P(FP) and P(FN) in the present work (0.0000 to 0.3765 and 
0.4000 to 1.0000, respectively), were generally greater than 
those in the aforementioned study (0.227 and 0.250, respec-
tively). It is especially important for the practical application 
of such models since a high percentage of misdiagnosed dys-
tocic cows results in all adverse consequences associated with 
dystocia, both for the dam and her offspring. Also, the reli-
ability of dystocia detection by individual models in the present 
work expressed as P(PSTP) was much lower (0.0375 to 0.0588) 
than that (0.250) recorded by Zaborski et al [10], whereas 
P(PSTN) was almost identical (0.9642 to 0.9779). Sensitivity 
for GDA in the present study was null, while the values ob-
tained by other authors using linear discriminant function 
analysis [8,11,12] ranged from 0.067 to 0.571. However, Sp 
(1.0000) and the overall Acc (0.9646) were high and similar 
to the values (0.905 to 0.995 and 0.844 to 0.927, respectively) 
reported by others [8,11,12]. Also, P(FP) in the present work 
was lower (0.0000) and P(FN) was much higher (1.0000) in 

comparison with the rates (0.095 and 0.429, respectively) 
recorded by Morrison et al [12], whereas the reliability of 
predictions for normal calvings, i.e. P(PSTN), was slightly 
greater (0.9646) than that (0.905) in the above-mentioned 
study. However, the P(PSTP) value could not be calculated 
due to the absence of correctly diagnosed difficult cases. We 
would like to emphasize again that the most substantial mea-
sure of the model detection performance is its Se on the T set, 
which was unsatisfactory for cows in the current work, but 
one should also take into account that the frequency of diffi-
cult calvings in the cow dataset was very low (approximately 
0.030) and this could have negatively affected the ability of the 
models to correctly diagnose such cases.
  In the case of the three-class system for the calving records 
of cows, the percentage of correct diagnosis for the first two 
classes (easy and moderate) was satisfactory but it was un-
acceptable for the category of difficult calvings, although the 
overall Acc was also relatively good. The final stage of the 
current research was the ROC analysis. The AUC values were 
relatively low (0.51 to 0.69) and lower than those reported by 
Zaborski and Grzesiak [8] and Zaborski et al [10] for dystocia 
detection in dairy cows using ANN and boosted classification 
trees (0.63 to 0.84 and 0.86, respectively). Also, Piwczyński et 
al [15] in their study on dystocia and stillbirth prediction in 
dairy cows using decision trees obtained slightly higher values 
of AUC (0.61 to 0.71).
  In the case of the cow dataset, the detection performance 
of GDA and LR on the T set in the two-class system, was, 
in general, much worse than that for other methods from the 
field of data mining (except for NBC, which was equally in-
effective), whereas the probabilities for GDA in the three-
class system were similar to those for other classifiers. When 
analyzing the performance of individual models, one should 
also take into account that some assumptions of their ap-
plicability were not fulfilled, which could have affected the 
obtained results. On the other hand, such assumptions are 
not required for ANN and MARS, which makes them more 
flexible in the task of dystocia detection.

CONCLUSION

This study shows that different types of ANN, MARS, and NBC 
as well as more traditional methods such as GDA and LR are 
useful for the detection of difficult calvings in dairy heifers. 
Somewhat worse results were obtained for dystocia detection 
in cows, in which sensitivity was rather low, especially for the 
non-neural classifiers, with the acceptable levels of specificity 
and accuracy. This trend was confirmed in the system with 
three categories, in which all difficult calvings were misclassi-
fied by all the models. In general, more traditional classifiers 
such as GDA and LR produced results similar to more recent 
data mining methods, which proves their usefulness for dys-
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tocia detection. The most significant predictors for calving 
difficulty were an average calving difficulty score for the dam’s 
sire, calving age, farm category based on its mean milk pro-
duction, calf sex, the difficulty of the preceding calving and 
the mean daily milk yield for the preceding lactation. Due to 
the relatively high milk production of the herds investigated 
in the present study, the inclusion of a larger number of herds, 
also with lower milk production, would be warranted in the 
future research. The potential application of the described me
thods in dairy cattle farming requires, however, their further 
improvement in order to eliminate the cases of misdiagnosis 
and increase the reliability of detection.
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