DOI QR코드

DOI QR Code

NEW PHOTOMETRIC PIPELINE TO EXPLORE TEMPORAL AND SPATIAL VARIABILITY WITH KMTNET DEEP-SOUTH OBSERVATIONS

  • Chang, Seo-Won (Research School of Astronomy and Astrophysics, The Australian National University) ;
  • Byun, Yong-Ik (Department of Astronomy and University Observatory, Yonsei University) ;
  • Shin, Min-Su (Korea Astronomy and Space Science Institute) ;
  • Yi, Hahn (Department of Astronomy and University Observatory, Yonsei University) ;
  • Kim, Myung-Jin (Korea Astronomy and Space Science Institute) ;
  • Moon, Hong-Kyu (Korea Astronomy and Space Science Institute) ;
  • Choi, Young-Jun (Korea Astronomy and Space Science Institute) ;
  • Cha, Sang-Mok (Korea Astronomy and Space Science Institute) ;
  • Lee, Yongseok (Korea Astronomy and Space Science Institute)
  • Received : 2018.03.12
  • Accepted : 2018.09.18
  • Published : 2018.10.31

Abstract

The DEEP-South (the Deep Ecliptic Patrol of the Southern Sky) photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry (< ${\pm}1-2$ arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- (~0.12 mag) and relatively large-amplitude (~0.5 mag) variations of their dominant rotational signals in R-band.

Keywords

References

  1. Albareti, F. D., Allende Prieto, C., Almeida, A., et al. 2017, The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory, ApJS, 233, 25 https://doi.org/10.3847/1538-4365/aa8992
  2. Bertin, E. 2006, Automatic Astrometric and Photometric Calibration with SCAMP, ASPC, 351, 112
  3. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for Source Extraction, A&AS, 117, 393 https://doi.org/10.1051/aas:1996164
  4. Berthier, J., Vachier, F., Thuillot, W., et al. 2006, Sky-BoT, A New VO Service to Identify Solar System Objects, ASPC, 351, 367
  5. Bowell, E., Koehn, B. W., Howell, S. B., et al. 1995, The Lowell Observatory Near-Earth-Object Search: A Progress Report, DPS, 27, 01.10
  6. Chang, S.-W., Byun, Y.-I., & Hartman, J. D. 2015, A New Method for Robust High-Precision Time-Series Photometry from Well-Sampled Images: Application to Archival MMT/Megacam Observations of the Open Cluster M37, AJ, 149, 135 https://doi.org/10.1088/0004-6256/149/4/135
  7. Chou, J., Howison, M., Austin, B., et al. 2011, Parallel Index and Query for Large Scale Data Analysis. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC11). ACM, New York, USA, 30, 11
  8. Covey, K. R., Ivezic, Z., Schlegel, D., et al. 2007, Stellar SEDs from 0.3 to 2.5 ${\mu}m$: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS, AJ, 134, 2398 https://doi.org/10.1086/522052
  9. Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, First Results from the Catalina Real-Time Transient Survey, ApJ, 696, 870 https://doi.org/10.1088/0004-637X/696/1/870
  10. Drake, A. J., Graham, M. J., Djorgovski, S. G., et al. 2014, The Catalina Surveys Periodic Variable Star Catalog, ApJS, 213, 9 https://doi.org/10.1088/0067-0049/213/1/9
  11. Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2016, The Pan-STARRS1 Database and Data Products, arXiv:1612.05243
  12. Ivezic, Z., Smith, J. A., Miknaitis, G., et al. 2007, Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry, AJ, 134, 973 https://doi.org/10.1086/519976
  13. Hartman, J. D., & Bakos, G. A. 2016, VARTOOLS: A Program for Analyzing Astronomical Time-Series Data, A&C, 17, 1
  14. Heinze, A. N., Tonry, J. L., Denneau, L., et al. 2018, A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-Impact Last Alert System (ATLAS), arXiv:1804.02132
  15. Kaiser, N., Aussel, H., Burke, B. E., et al. 2002, Pan-STARRS: A Large Synoptic Survey Telescope Array, SPIE, 4836, 154
  16. Kim, D.-W., Protopapas, P., Alcock, C., et al. 2009, Detrending Time Series for Astronomical Variability Surveys, MNRAS, 397, 558 https://doi.org/10.1111/j.1365-2966.2009.14967.x
  17. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016a, KMT-Net: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  18. Kim, S.-L., Cha, S.-M., Lee, C.-U., et al. 2016b, Crosstalk Correction of the KMTNet Mosaic CCD Image, PKAS, 31, 35
  19. Lagerkvist, C.-I., Harris, A. W., & Zappala, V. 1989, Asteroid Lightcurve Parameters, Asteroids II, 1162
  20. Larson, S., Beshore, E., Hill, R., et al. 2003, The CSS and SSS NEO Surveys, DPS, 35, 3604
  21. Lin, C.-H., Ip, W.-H., Lin, Z.-Y., et al. 2014, Detection of Large Color Variation in the Potentially Hazardous Asteroid (297274) 1996 SK, RAA, 14, 311
  22. Liu, Y.-B., Wang, F., Ji, K.-F., et al. 2014, NVST Data Archiving System Based on FastBit NoSQL Database, JKAS, 47, 115
  23. Miceli, A., Rest, A., Stubbs, C. W., et al. 2008, Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey, ApJ, 678, 865 https://doi.org/10.1086/533484
  24. Moon, H.-K., Kim, M.-J., Yim, H.-S., et al. 2016, DEEP-South: Network Construction, Test Runs and Early Results, Asteroids: New Observations, New Models, 318, 306
  25. Mueller, M., Delbo', M., Hora, J. L., et al. 2011, ExploreNEOs. III. Physical Characterization of 65 Potential Spacecraft Target Asteroids, AJ, 141, 109 https://doi.org/10.1088/0004-6256/141/4/109
  26. Palaversa, L., Ivezic, Z., Eyer, L., et al. 2013, Exploring the Variable Sky with LINEAR. III. Classification of Periodic Light Curves, AJ, 146, 101 https://doi.org/10.1088/0004-6256/146/4/101
  27. Peacock, J. A. 1983, Two-Dimensional Goodness-of-Fit Testing in Astronomy, MNRAS, 202, 615 https://doi.org/10.1093/mnras/202.3.615
  28. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipe (Cambridge: Cambridge Univ. Press)
  29. Rebassa-Mansergas, A., Agurto-Gangas, C., Schreiber, M. R., et al. 2013, White Dwarf Main-Sequence Binaries from SDSS DR 8: Unveiling the Cool White Dwarf Population, MNRAS, 433, 3398 https://doi.org/10.1093/mnras/stt974
  30. Ruan, J. J., Anderson, S. F., MacLeod, C. L., et al. 2012, Characterizing the Optical Variability of Bright Blazars: Variability-Based Selection of Fermi Active Galactic Nuclei, ApJ, 760, 51 https://doi.org/10.1088/0004-637X/760/1/51
  31. Sesar, B., Stuart, J. S., Ivezic, Z., et al. 2011, Exploring the Variable Sky with LINEAR. I. Photometric Recalibration with the Sloan Digital Sky Survey, AJ, 142, 190 https://doi.org/10.1088/0004-6256/142/6/190
  32. Sesar, B., Ivezic, Z., Stuart, J. S., et al. 2013, Exploring the Variable Sky with LINEAR. II. Halo Structure and Substructure Traced by RR Lyrae Stars to 30 kpc, AJ, 146, 21 https://doi.org/10.1088/0004-6256/146/2/21
  33. Shin, M.-S., & Byun, Y.-I. 2004, Efficient Period Search for Time Series Photometry, JKAS, 37, 79
  34. Shin, M.-S., Sekora, M., & Byun, Y.-I. 2009, Detecting Variability in Massive Astronomical Time Series Data - I. Application of an Infinite Gaussian MixtureModel, MNRAS, 400, 1897 https://doi.org/10.1111/j.1365-2966.2009.15576.x
  35. Shin, M.-S., Yi, H., Kim, D.-W., et al. 2012, Detecting Variability in Massive Astronomical Time-Series Data. II. Variable Candidates in the Northern Sky Variability Survey, AJ, 143, 65 https://doi.org/10.1088/0004-6256/143/3/65
  36. Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, The Two Micron All Sky Survey (2MASS), AJ, 131, 1163 https://doi.org/10.1086/498708
  37. Stokes, G. H., Evans, J. B., Viggh, H. E. M., et al. 2000, Lincoln Near-Earth Asteroid Program (LINEAR), Icar, 148, 21 https://doi.org/10.1006/icar.2000.6493
  38. Torrealba, G., Catelan, M., Drake, A. J., et al. 2015, Discovery of -9000 new RR Lyrae in the Southern Catalina Surveys, MNRAS, 446, 2251 https://doi.org/10.1093/mnras/stu2274
  39. van Dokkum, P. G. 2001, Cosmic-Ray Rejection by Laplacian Edge Detection, PASP, 113, 1420 https://doi.org/10.1086/323894
  40. Watson, C., Henden, A. A., & Price, A. 2017, VizieR Online Data Catalog: AAVSO International Variable Star Index VSX, 1
  41. Wolf, C., Onken, C. A., Luvaul, L. C., et al. 2018, SkyMapper Southern Survey: First Data Release (DR1), PASA, 35, 10
  42. Wu, K., Ahern S., Bethel, E. W., et al. 2009, FastBit: Interactively Searching Massive Data, JPhCS, 180, 012053
  43. Yim, H.-S., Kim, M.-J., Bae, Y.-H., et al. 2016, DEEP-South: Automated Observation Scheduling, Data Reduction and Analysis Software Subsystem, Asteroids: New Observations, New Models, 318, 311