DOI QR코드

DOI QR Code

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea

도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구

  • Yu, Eunjin (Department of Environmental Engineering, Chungnam National University) ;
  • Seo, Dongil (Department of Environmental Engineering, Chungnam National University)
  • Received : 2018.08.17
  • Accepted : 2018.09.10
  • Published : 2018.10.31

Abstract

Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.

본 연구에서는 대전 관평천의 도시유역에서 2017~2018년에 발생한 강우 20건의 유출수를 연속적으로 채취하여 As, Cd, Cr, Cu, Ni, Pb 및 Zn의 중금속 및 총고형물질(TSS) 농도와 유량을 분석하고, 강우특성과 수질 변화의 강우사상별 및 시간별 상관관계를 조사하였다. 일정 강우강도에서 오염물질의 최대농도는 강우 초기에 발생하는 경향을 나타냈으나, 강우량 및 강우강도가 작은 경우에는 일정 시간 경과 후 발생하는 것이 관찰되었다. 강우지속시간은 중금속 농도 및 부하량과 큰 상관성을 보이지 않았다. Cu와 Zn을 제외한 중금속 질량은 강우강도(0.60~0.88) 및 총강우 유출량(0.74~0.89)과 상대적으로 높은 상관관계를 나타냈다. 강우 시 유량가중평균농도와 선행무강우일수 또한 양의 상관성(0.54~0.73)을 보이는 반면, 30분 강우강도로 표현된 시간별 유출량과 TSS 및 중금속 농도는 전혀 상관성을 나타내지 않았다. 무강우 기간 동안 지표면에 축적된 오염물질이 최소한의 강우 에너지에도 세척효과가 발생하여 강우특성과는 무관하기 때문인 것으로 추정된다. 중금속과 TSS 농도의 시간에 따른 변화특성은 상관계수가 0.68~0.87로 양호한 수준을 나타냈다. 이는 고형물질의 이동과 중금속 물질의 이동이 함께 발생한다는 것을 시사하며 동시에 중금속이 고형물질에 흡착되어 이동한다는 것을 의미한다. 따라서 비강우 시에 유역 표면의 고형물질을 청소 등으로 사전에 제거할 경우 하천으로 유입되는 중금속오염물질의 양을 현격하게 저감할 수 있을 것으로 판단된다.

Keywords

References

  1. Adachi, K., and Tainosho, Y. (2004). "Characterization of heavy metal particles embedded in tire dust." Environment international, Vol. 30, No. 8, pp. 1009-1017. https://doi.org/10.1016/j.envint.2004.04.004
  2. Akan, A. O., and Houghtalen, R. J. (2003). Urban hydrology, hydraulics, and stormwater quality: engineering applications and computer modeling. John Wiley & Sons, US.
  3. Barrett, M. E., Irish Jr, L. B., Malina Jr, J. F., and Charbeneau, R. J. (1998). "Characterization of highway runoff in Austin, Texas, area." Journal of Environmental Engineering, Vol. 124, No. 2, pp. 131-137. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:2(131)
  4. Beasley, G., and Kneale, P. (2002). "Reviewing the impact of metals and PAHs on macroinvertebrates in urban watercourses." Progress in Physical Geography, Vol. 26, No. 2, pp. 236-270. https://doi.org/10.1191/0309133302pp334ra
  5. Charters, F. J., Cochrane, T. A., and O'Sullivan, A. D. (2016). "Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate." Science of the Total Environment, Vol. 550, pp. 265-272. https://doi.org/10.1016/j.scitotenv.2016.01.093
  6. Davis, A. P., Shokouhian, M., and Ni, S. (2001). "Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources." Chemosphere, Vol. 44, No. 5, pp. 997-1009. https://doi.org/10.1016/S0045-6535(00)00561-0
  7. Genc-Fuhrman, H., Mikkelsen, P. S., and Ledin, A. (2007). "Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents." Water Research, Vol. 41, No. 3, pp. 591-602. https://doi.org/10.1016/j.watres.2006.10.024
  8. Giudice, G. D., Padulano, R., and Rasulo, G. (2012). "Factors affecting the runoff coefficient." Hydrology and Earth System Sciences Discussions, Vol. 9, No. 4, pp. 4919-4941. https://doi.org/10.5194/hessd-9-4919-2012
  9. Granato, G. E., Church, P. E., and Stone, V. J. (1995). "Mobilization of major and trace constituents of highway runoff in groundwater potentially caused by deicing chemical migration." Transportation Research Record, Vol. 1483, pp. 92-104.
  10. Han, Y., and Seo, D. (2014). "Application of LID methods for sustainable management of small urban stream using SWMM." Journal of Korean Society of Environmental Engineers, Vol. 36, No. 10, pp. 691-697. https://doi.org/10.4491/KSEE.2014.36.10.691
  11. Herngren, L., Goonetilleke, A., and Ayoko, G. A. (2005). "Understanding heavy metal and suspended solids relationships in urban stormwater using simulated rainfall." Journal of Environmental Management, Vol. 76, No. 2, pp. 149-158. https://doi.org/10.1016/j.jenvman.2005.01.013
  12. Huang, Y., Zhang, D., Xu, Z., Yuan, S., Li, Y., and Wang, L. (2017). "Effect of overlying water pH, dissolved oxygen and temperature on heavy metal release from river sediments under laboratory conditions." Archives of Environmental Protection, Vol. 43, No. 2, pp. 28-36. https://doi.org/10.1515/aep-2017-0014
  13. Ichiki, A., and Yamada, K. (1999). "Study on characteristics of pollutant runoff into Lake Biwa, Japan." Water Science and Technology, Vol. 39, No. 12, p. 17. https://doi.org/10.1016/S0273-1223(99)00313-3
  14. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda, K. N. (2014). "Toxicity, mechanism and health effects of some heavy metals." Interdisciplinary Toxicology, Vol. 7, No. 2, pp. 60-72. https://doi.org/10.2478/intox-2014-0009
  15. Kayhanian, M., Stransky, C., Bay, S., Lau, S.-L., and Stenstrom, M. K. (2008). "Toxicity of urban highway runoff with respect to storm duration." Science of the Total Environment, Vol. 389, No. 2-3, pp. 386-406. https://doi.org/10.1016/j.scitotenv.2007.08.052
  16. Kim, J., Seo, D., and Lee, T. (2017). "Effectiveness of settling treatment system to reduce urban nonpoint source pollutant load by first flush." Journal of Korean Society Environmental Engineers, Vol. 39, No. 3, pp. 140-148. https://doi.org/10.4491/KSEE.2017.39.3.140
  17. Kim, L. H., Ko, S. O., Lee, B. S., and Kim, S. (2006). "Estimation of pollutant EMCs and loadings in highway runoff." Journal of The Korean Society of Civil Engineers, Vol. 26, No. 2B, pp. 225-231.
  18. KMA (2018). Climate monitoring: Climate of Korea, accessed 13 August 2018, .
  19. Koo, Y. M., Kim, J., Kim, B. R., and Seo, D. (2015). "Removal of suspended solids from stormwater runoff using a fabric filter system." Journal of Korean Society of Environmental Engineers, Vol. 37, No. 3, pp. 165-174. https://doi.org/10.4491/KSEE.2015.37.3.165
  20. Koo, Y. M., Seo, D. (2017). "Parameter estimations to improve urban planning area runoff prediction accuracy using Stormwater Management Model (SWMM)." Journal of Korea Water Resources Association, Vol. 50, No. 5, pp. 303-313. https://doi.org/10.3741/JKWRA.2017.50.5.303
  21. Lambert, M., Leven, B. A., and Green, R. M. (2000). New methods of cleaning up heavy metal in soils and water. Environmental Science and Technology Briefs for Citizens. Kansas State University, Manhattan, KS, US.
  22. Li, C., Liu, M., Hu, Y., Gong, J., Sun, F., and Xu, Y. (2014). "Characterization and first flush analysis in road and roof runoff in Shenyang, China." Water Science and Technology, Vol. 70, No. 3, pp. 397-406. https://doi.org/10.2166/wst.2014.203
  23. McPherson, T. N., Burian, S. J., Stenstrom, M. K., Turin, H. J., Brown, M. J., and Suffet, I. H. (2005). "Trace metal pollutant load in urban runoff from a Southern California watershed." Journal of Environmental Engineering, Vol. 131, No. 7, pp. 1073-1080. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:7(1073)
  24. Ministry of Environment, Republic of Korea (2003). Introduction: Effects of Nonpoint Source, accessed 08 September 2018, .
  25. Myers, C. F., Meek, J., Tuller, S., and Weinberg, A. (1985). "Nonpoint sources of water pollution." Journal of Soil and Water Conservation, Vol. 40, No. 1, pp. 14-18.
  26. Novotny, V. (1994). Water quality: prevention, identification and management of diffuse pollution. Van Nostrand-Reinhold Publishers, New York, US.
  27. Novotny, V. (1995). Non point pollution and urban stormwater management (Vol. 9). CRC Press, US.
  28. Pegram, G. C., Quibell, G., and Hinsch, M. (1999). "The nonpoint source impacts of peri-urban settlements in South Africa: implications for their management." Water Science and Technology, Vol. 39, No. 12, pp. 283-290. https://doi.org/10.2166/wst.1999.0557
  29. Sansalone, J. J., and Buchberger, S. G. (1997). "Partitioning and first flush of metals in urban roadway storm water." Journal of Environmental Engineering, Vol. 123, No. 2, pp. 134-143. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)
  30. Seo, D., and Fang, T. (2012). "Application of automatic stormwater monitoring system and SWMM model for estimation of urban pollutant loading during storm events." Journal of Korean Society of Environmental Engineers, Vol. 34, No. 6, pp. 373-381. https://doi.org/10.4491/KSEE.2012.34.6.373
  31. Seo, D., and Kim, J. (2016). "Reduction of pollutant concentrations in urban stormwater runoff by settling." Journal of Korean Society of Environmental Engineers, Vol. 38, No. 4, pp. 210-218. https://doi.org/10.4491/KSEE.2016.38.4.210
  32. Seo, D., Lee, T., Kim, J., and Koo, Y. (2017). "Development of integrated management system (ISTORMS) for efficient operation of first flush treatment system for urban rivers." Water Practice and Technology, Vol. 12, No. 3, pp. 557-563. https://doi.org/10.2166/wpt.2017.065
  33. Sciban, M., Radetic, B., Kevresan, Z., and Klasnja, M. (2007). "Adsorption of heavy metals from electroplating wastewater by wood sawdust." Bioresource Technology, Vol. 98, No. 2, pp. 402-409. https://doi.org/10.1016/j.biortech.2005.12.014
  34. USEPA (2001). Technical fact sheet: final rule for arsenic in drinking water. EPA/815/F-00/016.
  35. USEPA (2017). Nonpoint source: urban areas, accessed 27 November 2017, .
  36. Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (1993). Probability and statistics for engineers and scientists (Vol. 5). (Kim, B. S., Park, S. K., Yoo, Y. K., Jung, S. I., Trans.), New York: Macmillan, US.
  37. Wicke, D., Cochrane, T. A., and O'sullivan, A. (2012). "Build-up dynamics of heavy metals deposited on impermeable urban surfaces." Journal of Environmental Management, Vol. 113, pp. 347-354. https://doi.org/10.1016/j.jenvman.2012.09.005
  38. Wu, J. S., Allan, C. J., Saunders, W. L., and Evett, J. B. (1998). "Characterization and pollutant loading estimation for highway runoff." Journal of Environmental Engineering, Vol. 124, No. 7, pp. 584-592. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:7(584)
  39. Wu, J. S., Holman, R. E., and Dorney, J. R. (1996). "Systematic evaluation of pollutant removal by urban wet detention ponds." Journal of Environmental Engineering, Vol. 122, No. 11, pp. 983-988. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:11(983)
  40. Yin, Z., Koo, Y., Lee, E., and Seo, D. (2015). "Development of integrated management system of stormwater retention and treatment in waterside land for urban stream environment." Journal of Korean Society of Environmental Engineers, Vol. 37, No. 2, pp. 126-135. https://doi.org/10.4491/KSEE.2015.37.2.126
  41. Youm, S. J., Lee, P. K., Yeon, K. H., and Kang, M. J. (2005). "Heavy metal contamination in roadside sediments within the watershed of the Hoidong reservoir in Busan city." Economic and Environmental Geology, Vol. 38, No. 3, pp. 247-260.
  42. Zanders, J. M. (2005). "Road sediment: characterization and implications for the performance of vegetated strips for treating road run-off." Science of the Total Environment, Vol. 339, No. 1-3, pp. 41-47. https://doi.org/10.1016/j.scitotenv.2004.07.023