DOI QR코드

DOI QR Code

Investigation of Sweet and Sour Corrosion of Mild Steel in Oilfield Environment by Polarization, Impedance, XRD and SEM Studies

  • Paul, Subir (Dept of Metallurgical and Material Engineering, Jadavpur University) ;
  • Kundu, Bikramjit (Dept of Metallurgical and Material Engineering, Jadavpur University)
  • 투고 : 2018.09.07
  • 심사 : 2018.10.08
  • 발행 : 2018.10.31

초록

Metallic structures in the oil and gas production undergo severe degradation due to sweet and sour corrosion caused by the presence of $CO_2$ and $H_2S$ in the fluid environment. The corrosion behavior of 304 austenitic stainless was investigated in the presence of varying concentrations of $CO_2$ or $H_2S$ and $CO_2+H_2S$ to understand the effect of the parameters either individually or in combination. Potentiodynamic polarization study revealed that a small amount of $CO_2$ aided in the formation of calcareous deposit of protective layer on passive film of 304 steel, while increase in $CO_2$ concentration ruptured the layer resulting in sweet corrosion. The presence of $S^{2-}$ damaged the passive and protective layer of the steel and higher levels increased the degradation rate. Electrochemical impedance studies revealed lower polarization resistance and impedance at higher concentration of $CO_2$ or $H_2S$, supporting the outcomes of polarization study. XRD analysis revealed different types of iron carbides and iron sulphides corresponding to sweet and sour corrosion as the corrosion products, respectively. SEM analysis revealed the presence of uniform, localized and sulphide cracking in sour corrosion and general corrosion with protective carbide layer amid for sweet corrosion.

키워드

참고문헌

  1. Dechema, Handbook of Corrosion, Weinheim: VCH Publishers, Vol. 11, NY, USA (1992).
  2. J. Robert and M. E. Robert, The changing Topography of Corroded mild Steel Surface in Seawater, Corros. Sci., 49, 2270 (2007). https://doi.org/10.1016/j.corsci.2006.11.003
  3. Ch. Barchiche, C. Deslouis, O. Gil, S. Joiret, Ph. Refait, and B. Tribollet, Electrochim. Acta, 54, 3580 (2009). https://doi.org/10.1016/j.electacta.2009.01.023
  4. M. A. Deyab and S. T. Keera, Egypt. J. Petrol., 21, 31 (2012). https://doi.org/10.1016/j.ejpe.2012.02.005
  5. S. Peter, S. Roy, S. David, M. Stephen, P. David, and L. John, Chem. Eng. Sci., 66, 5775 (2011). https://doi.org/10.1016/j.ces.2011.07.033
  6. R. E. Melchers, Corrosion, 59, 335 (2003). https://doi.org/10.5006/1.3277565
  7. M. L. Free, W. Wang, and D. Y. Ryu, Corrosion, 60, 837 (2004). https://doi.org/10.5006/1.3287864
  8. S. Nesic, Corros. Sci., 49, 4308 (2007). https://doi.org/10.1016/j.corsci.2007.06.006
  9. H. H. Huang, W. T. Tsai, and J. T. Lee, Electrochim. Acta, 41, 1191 (1996). https://doi.org/10.1016/0013-4686(95)00470-X
  10. J. Tang, Y. Shao, J. Guo, T. Zhang, G. Meng, and F. Wang, Corros. Sci., 52, 2050 (2010). https://doi.org/10.1016/j.corsci.2010.02.004
  11. P. Smith and D. Swailes, Chem. Eng. Sci., 66, 5775 (2011). https://doi.org/10.1016/j.ces.2011.07.033
  12. Subir Paul, Modeling to study the effect of environmental parameters on corrosion of mild steel in seawater using neural network, ISRN Metallurgy, Article ID 487351, 6 (2012).
  13. S. Paul, J. Mater. Eng. Perform., 20, 325 (2011). https://doi.org/10.1007/s11665-010-9686-1
  14. S. Paul, Can. Metall. Quart., 45, 99 (2010).
  15. S. Paul, S. K Guchhait, and K. Goswami, Innovat. Corros. Mater. Sci., 4, 127 (2014).
  16. S. Paul and I. Biswas, Innovat. Corros. Mater. Sci., 5, 10 (2015).
  17. S. Paul J. Mater. Eng. Perform., 20, 325 (2012).
  18. S. Paul, Res. Rev. Electrochem., 5, 77 (2014).
  19. S. Paul, Innovat. Corros. Mater. Sci., 4, 127 (2014).
  20. S. Paul, J. Comput. Intel. Electr Sys., l3, 1 (2014).
  21. S. Paul, Corrosion and Protection of Materials: Understanding and Application, Amazon Book Store (2017). https://www.amazon.in/dp/B074DQSR96
  22. ASTM G 5, Potentiostatic and Potentiodynamic Anodic Polarization Measurements (1993).
  23. ASTM G 59, Polarization Resistance Measurements (1992).