DOI QR코드

DOI QR Code

Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃

니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰

  • Jung, Sujin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Gyeong-Geun (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Dong-Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
  • 정수진 (한국원자력연구원 원자력재료연구부) ;
  • 이경근 (한국원자력연구원 원자력재료연구부) ;
  • 김동진 (한국원자력연구원 원자력재료연구부)
  • Received : 2018.08.20
  • Accepted : 2018.10.02
  • Published : 2018.10.31

Abstract

Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

Keywords

References

  1. G .R. Wallwork and A. Z. Hed, Oxidation of Metals, 3, 171 (1971). https://doi.org/10.1007/BF00603485
  2. T. Takasugi and O. Izumi, Acta Met., 33, 1247 (1985). https://doi.org/10.1016/0001-6160(85)90236-6
  3. J. C. Jung, K. S. Yun, B. S. Yang, S. K. Ko and C. W. Won, J. of the Korean lnst. of met. & Mater., 7, 841 (1997).
  4. Special Metals Publication, Number SMC-029, Alloy 617 (2005).
  5. W. Ren and R. Swimdeman, J. Pressure Vessel Technol., 131, 024002 (2009). https://doi.org/10.1115/1.2967885
  6. Y. Hosoi and S. Abe, Metall. Trans., 6A, 1171 (1975).
  7. M. R. Quadakkers, Werkst. Korro., 36, 335 (1984).
  8. H. -J. Christ, U. Kunecke, K. Meyer, and G. Sockel, Mater. Sci. Eng., 87, 161 (1987). https://doi.org/10.1016/0025-5416(87)90374-0
  9. F. Rouillard, C. Cabet, K. Wolski, A. Terlain, M. Tabarant, M. Pijolat, and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.049
  10. P. S. Shankar and K. Natesan, J. Nucl. Mater., 366, 28 (2007). https://doi.org/10.1016/j.jnucmat.2006.12.028
  11. W. Kim, S. Yin, G. Lee, Y. Kim, and S. Kim, Int. J. of PVP., 87, 289 (2010).
  12. D. Kim, In Sah, D. Kim, W-S. Ryu, and C. Jang, Oxidation of Metals, 75, 103 (2011). https://doi.org/10.1007/s11085-010-9223-5
  13. T. C. Totemeier and H. Tian, Mater. Sci. Eng. A, 468, 81 (2007).
  14. G.-G. Lee, S. Jung, D. Kim, W.-G. Kim, J. Y. Park, and D.-J. Kim, Kor. J. Mater. Res., 21, 596 (2011). https://doi.org/10.3740/MRSK.2011.21.11.596
  15. D. J. Kim, G.-G. Lee, S. J. Jeong, W. G. Kim, and J. Y. Park, Nucl. Eng. Technol., 43, 429 (2011). https://doi.org/10.5516/NET.2011.43.5.429
  16. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals 2nd, pp. 49-50, Cambridge University Press, UK (2006).
  17. D. Young, High Temperature Oxidation and Corrosion of Metals, p. 81, Elsevier (2008).
  18. Denny A. Jones, Principles and Prevention of Corrosion 2nd, p. 425, Pearson (2011).
  19. C. Cabet and B. Duprey, Proc. of HTR 2010, Prague, p. 54, October 18-20, Czech Republic (2010).
  20. W. G. Kim, S. N. Yin, G.-G. Lee, Y. W. Kim, S. J. Kim, Int. J. Press.Vess. Pip., 87, 289 (2010). https://doi.org/10.1016/j.ijpvp.2010.03.008
  21. G.-G. Lee, S. J. Jung, and J.-Y. Park, J. Mater. Sci. Technol., 29, 1177 (2013). https://doi.org/10.1016/j.jmst.2013.09.024
  22. B. K. Lee, S. Y. Chung, and J. L. Kang, Acta Materialia., 48, 1575 (2000). https://doi.org/10.1016/S1359-6454(99)00434-6
  23. J. Chang and S. -J. L. Kang, Key Engineering Materials, 352, 25 (2007). https://doi.org/10.4028/www.scientific.net/KEM.352.25