DOI QR코드

DOI QR Code

Study of Chloride Corrosion Organic Inhibitors in Alkaline Pore Solution

  • Cabrini, M. (University of Bergamo-Department of Engineering and Applied Sciences via MArconi) ;
  • Lorenzi, S. (University of Bergamo-Department of Engineering and Applied Sciences via MArconi) ;
  • Pastore, T. (University of Bergamo-Department of Engineering and Applied Sciences via MArconi) ;
  • Pellegrini, S. (University of Bergamo-Department of Engineering and Applied Sciences via MArconi)
  • 투고 : 2018.06.14
  • 심사 : 2018.09.05
  • 발행 : 2018.10.31

초록

This paper compares the inhibition properties of aspartic and lactic acid salts with nitrite ions and their effect on critical chloride concentration. The tests were carried employing carbon steel specimens in saturated lime solution with varying pH in the range between13 to 13.6. The critical chloride concentration was estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in the alkaline concrete of atmospheric structures. During tests, chloride salt was added every 48 h until all the specimens showed localized attacks. The cumulative distribution curves, i.e. the number of corroded specimens as a function of the chlorides concentration was obtained. Furthermore, IR spectra were recorded for the evaluation of the presence of the organic inhibitors on the passivity film. The results confirmed the inhibitory effect of 0.1M aspartate comparable with nitrite ions, at a similar concentration. Addition of calcium lactate did not result in an increase in the critical chloride concentration. However, the formation of a massive scale containing the substance that could reduce the corrosion propagation was observed.

키워드

참고문헌

  1. B. Elsener, Corrosion Inhibitors for Steel in Concrete, State of the Art Report, p. 35, EFC Publications (2001).
  2. T. A. Soylev and M. G. Richardson, Constr. Build. Mater., 22, 609 (2008) https://doi.org/10.1016/j.conbuildmat.2006.10.013
  3. M. Ormellese, M. Berra, F. M. Bolzoni, and T. Pastore, Cem. Concr. Res., 36, 536 (2006). https://doi.org/10.1016/j.cemconres.2005.11.007
  4. M. Collepardi, R. Fratesi, G. Moriconi, V. Corradetti, and L. Coppola, Use of nitrite salt as corrosion inhibitor admixtures in reinforced concrete structures immersed in sea-water, Proc. Int. RILEM Symp. on Admixtures for concrete, p. 279, Barcellona, Ed. Vazquez, Chapman and Hall, London (1990).
  5. M. Cabrini, S. Lorenzi, and T. Pastore, Electrochim. Acta, 124, 156 (2014). https://doi.org/10.1016/j.electacta.2013.10.062
  6. M. Cabrini, S. Lorenzi, and T. Pastore, La Metallurgia Italiana (J. Italian Metall.), 105, 21 (2013).
  7. T. Pastore, M. Cabrini, L. Coppola, S. Lorenzi, P. Marcassoli, and A. Buoso, Mater. Corros., 62, 187 (2011). https://doi.org/10.1002/maco.201005789
  8. C. L. Page, Nature, 258, 514 (1075).
  9. G. K. Glass and N. R. Buenfeld, Corros. Sci., 39, 1001 (1997). https://doi.org/10.1016/S0010-938X(97)00009-7
  10. J. Tritthart and P. F. G. Banfill, Cem. Concr. Res., 31, 1093 (2001). https://doi.org/10.1016/S0008-8846(01)00532-4
  11. B. Weckler and H. Lutz, Eur. J. Solid State Inorg, Chem., 35, 531 (1998). https://doi.org/10.1016/S0992-4361(99)80017-4
  12. S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chausse, and R. Messina, Corros. Sci., 43, 2049 (2001). https://doi.org/10.1016/S0010-938X(01)00012-9
  13. D. A. Hausmann, Mater. Prot., 6, 19 (11).
  14. V. K. Gouda, Br. Corros. J., 5, 198 (1970). https://doi.org/10.1179/000705970798324450
  15. M. Alonso and M. Sanchez, Mater. Corros., 60, 631 (2009). https://doi.org/10.1002/maco.200905296
  16. S. Goni and C. Andrade, Cem. Concr. Res., 20, 525 (1990). https://doi.org/10.1016/0008-8846(90)90097-H
  17. S. Diamond, Cement and Concrete Aggregate, 8, 97 (1986). https://doi.org/10.1520/CCA10062J
  18. T. Yonezawa, V. Ashworth, and R. P. M. Procter, Corrosion, 44, 489 (1988). https://doi.org/10.5006/1.3583967
  19. U. Angst and O. Vennesland, Concrete repair, rehabilitation and retrofitting II, pp. 311-317, Taylor & Francis Group, London (2009).
  20. U. Angst, B. Elsener, C. K. Larsen, and O. Vennesland, Cement and Cem. Concr. Res., 39, 1122 (2009). https://doi.org/10.1016/j.cemconres.2009.08.006
  21. M. Ormellese, L. Lazzari, S. Goidanich, G. Fumagalli, and A. Brenna, Corros. Sci., 51, 2959 (2009). https://doi.org/10.1016/j.corsci.2009.08.018
  22. D. J. Kalota and D. C. Silverman, Corrosion, 50, 138 (1994). https://doi.org/10.5006/1.3293502
  23. L. Valek, S. Martinez, D. Mikulic and I. Brnardic, Corros. Sci., 50, 2705 (2008). https://doi.org/10.1016/j.corsci.2008.06.018
  24. M. Cabrini and T. Pastore, Proc. 15th International Corrosion Congress, p. 2481, Curran Associates Inc., Granada, Spain (2002).
  25. C. Page, Proc. 9th Ninth European Symposium on Corrosion Inhibitors, University of Ferrara, Italy (2000).
  26. P. Garces, P. Saura, A. Mendez, E. Zornoza, and C. Andrade, Corros. Sci., 50, 498 (2008). https://doi.org/10.1016/j.corsci.2007.08.016
  27. V. Ngala, C. Page, and M. Page, Corros. Sci., 44, 2073 (2002). https://doi.org/10.1016/S0010-938X(02)00012-4
  28. M. Tullmin, L. Mammoliti, R. Sohdi, C. M. Hansson, and B. Hope, Cement Concrete and Aggregate, 17, 134 (1995). https://doi.org/10.1520/CCA10139J
  29. C. L. Page, V. T. Ngala, and M. M. Page, Mag. Concr. Res., 52, 25 (2000). https://doi.org/10.1680/macr.2000.52.1.25