DOI QR코드

DOI QR Code

Biomechanical Properties of the Cornea Using a Dynamic Scheimpflug Analyzer in Healthy Eyes

  • Lee, Hun (Department of Ophthalmology, International St. Mary's Hospital, Catholic Kwandong University College of Medicine) ;
  • Kang, David Sung Yong (Eyereum Eye Clinic) ;
  • Ha, Byoung Jin (Eyereum Eye Clinic) ;
  • Choi, Jin Young (Eyereum Eye Clinic) ;
  • Kim, Eung Kweon (The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine) ;
  • Seo, Kyoung Yul (The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine) ;
  • Kim, Tae-im (The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine)
  • Received : 2018.05.18
  • Accepted : 2018.08.20
  • Published : 2018.11.01

Abstract

Purpose: To investigate biomechanical properties of the cornea using a dynamic Scheimpflug analyzer according to age. Materials and Methods: In this prospective, cross-sectional, observational study, participants underwent ophthalmic investigations including corneal biomechanical properties, keratometric values, intraocular pressure (IOP), and manifest refraction spherical equivalent (MRSE). We determined the relationship of biomechanical parameters and ocular/systemic variables (participant's age, MRSE, IOP, and mean keratometric values) by piecewise regression analysis, association of biomechanical parameters with variables by Spearman's correlation and stepwise multiple regression analyses, and reference intervals (RI) by the bootstrap method. Results: This study included 217 eyes of 118 participants (20-81 years of age). Piecewise regression analysis between Corvis-central corneal thickness (CCT) and participant's age revealed that the optimal cut-off value of age was 45 years. No clear breakpoints were detected between the corneal biomechanical parameters and MRSE, IOP, and mean keratometric values. Corneal velocity, deformation amplitude, radius, maximal concave power, Corvis-CCT, and Corvis-IOP exhibited correlations with IOP, regardless of age (all ages, 20-44 years, and over 44 years). With smaller deformation amplitude and corneal velocity as well as increased CorvisIOP and Corvis-CCT, IOP became significantly increased. We provided the results of determination of confidence interval from RI data using bootstrap method in three separate age groups (all ages, 20-44 years, and over 44 years). Conclusion: We demonstrated multiple corneal biomechanical parameters according to age, and reported that the corneal biomechanical parameters are influenced by IOP.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Catholic Kwandong University International St. Mary's Hospital

References

  1. Soergel F, Jean B, Seiler T, Bende T, Mucke S, Pechhold W, et al. Dynamic mechanical spectroscopy of the cornea for measurement of its viscoelastic properties in vitro. Ger J Ophthalmol 1995;4:151-6.
  2. Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res 2006;83:709-20. https://doi.org/10.1016/j.exer.2006.03.015
  3. Lau W, Pye D. Changes in corneal biomechanics and applanation tonometry with induced corneal swelling. Invest Ophthalmol Vis Sci 2011;52:3207-14. https://doi.org/10.1167/iovs.10-6754
  4. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 2005;31:146-55. https://doi.org/10.1016/j.jcrs.2004.09.031
  5. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KC, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 2008;49:3262-8. https://doi.org/10.1167/iovs.07-1556
  6. Schweitzer C, Roberts CJ, Mahmoud AM, Colin J, Maurice-Tison S, Kerautret J. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci 2010;51:2403-10. https://doi.org/10.1167/iovs.09-3689
  7. Roberts C. Biomechanics of the cornea and wavefront-guided laser refractive surgery. J Refract Surg 2002;18:S589-92.
  8. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31:156-62. https://doi.org/10.1016/j.jcrs.2004.10.044
  9. Kamiya K, Shimizu K, Ohmoto F. Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis. Cornea 2009;28:765-9. https://doi.org/10.1097/ICO.0b013e3181967082
  10. Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol 2007;143:39-47. https://doi.org/10.1016/j.ajo.2006.09.036
  11. Narayanaswamy A, Chung RS, Wu RY, Park J, Wong WL, Saw SM, et al. Determinants of corneal biomechanical properties in an adult Chinese population. Ophthalmology 2011;118:1253-9.
  12. Vinciguerra R, Elsheikh A, Roberts CJ, Ambrosio R Jr, Kang DS, Lopes BT, et al. Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 2016;32:550-61. https://doi.org/10.3928/1081597X-20160524-01
  13. Shen Y, Chen Z, Knorz MC, Li M, Zhao J, Zhou X. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg 2014;30:310-8. https://doi.org/10.3928/1081597X-20140422-01
  14. Hassan Z, Modis L Jr, Szalai E, Berta A, Nemeth G. Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery. Cont Lens Anterior Eye 2014;37:337-41. https://doi.org/10.1016/j.clae.2014.05.001
  15. Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg 2014;40:1013-20. https://doi.org/10.1016/j.jcrs.2013.12.012
  16. Vellara HR, Ali NQ, Gokul A, Turuwhenua J, Patel DV, McGhee CN. Quantitative analysis of corneal energy dissipation and corneal and orbital deformation in response to an air-pulse in healthy eyes. Invest Ophthalmol Vis Sci 2015;56:6941-7. https://doi.org/10.1167/iovs.15-17396
  17. Valbon BF, Ambrosio R Jr, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol 2013;76:229-32. https://doi.org/10.1590/S0004-27492013000400008
  18. Lee H, Kang DS, Ha BJ, Choi JY, Kim EK, Seo KY, et al. Biomechanical properties of the cornea measured with the dynamic Scheimp flug analyzer in young healthy adults. Cornea 2017;36:53-8. https://doi.org/10.1097/ICO.0000000000001001
  19. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, et al. The Lens Opacities Classification System III. The longitudinal study of cataract study group. Arch Ophthalmol 1993;111:831-6. https://doi.org/10.1001/archopht.1993.01090060119035
  20. Sahin A, Bayer A, Ozge G, Mumcuoglu T. Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. Invest Ophthalmol Vis Sci 2009;50:4597-604. https://doi.org/10.1167/iovs.08-2763
  21. Kotecha A, Oddone F, Sinapis C, Elsheikh A, Sinapis D, Sinapis A, et al. Corneal biomechanical characteristics in patients with diabetes mellitus. J Cataract Refract Surg 2010;36:1822-8. https://doi.org/10.1016/j.jcrs.2010.08.027
  22. Zhong Y, Shen X, Yu J, Tan H, Cheng Y. The comparison of the effects of latanoprost, travoprost, and bimatoprost on central corneal thickness. Cornea 2011;30:861-4. https://doi.org/10.1097/ICO.0b013e3182000c27
  23. Koprowski R. Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer. Biomed Eng Online. 2014;13:150. https://doi.org/10.1186/1475-925X-13-150
  24. Shen Y, Zhao J, Yao P, Miao H, Niu L, Wang X, et al. Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One 2014;9:e103893. https://doi.org/10.1371/journal.pone.0103893
  25. Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci 2013;90:e1-8. https://doi.org/10.1097/OPX.0b013e318279eb87
  26. Naumova EN, Must A, Laird NM. Tutorial in biostatistics: evaluating the impact of 'critical periods' in longitudinal studies of growth using piecewise mixed effects models. Int J Epidemiol 2001;30:1332-41. https://doi.org/10.1093/ije/30.6.1332
  27. Ryan SE, Porth LS. A tutorial on the piecewise regression approach applied to bedload transport data. Fort Collins (CO): US Department of Agriculture, Forest Service, Rocky Mountain Research Station; 2007.
  28. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol 2012;41:441-53. https://doi.org/10.1111/vcp.12006
  29. Horowitz GL, Altaie S, Boyd JC, Ceriotti F, Garg U, Horn P, et al. Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guidelines. 3rd ed. CLSI document C28-A3. Wayne (PA): Clinical and Laboratory Standards Institute; 2008.
  30. Valbon BF, Ambrosio R Jr, Fontes BM, Luz A, Roberts CJ, Alves MR. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients. J Refract Surg 2014;30:468-73. https://doi.org/10.3928/1081597X-20140521-01
  31. Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg 2014;30:408-14. https://doi.org/10.3928/1081597X-20140513-02
  32. Huseynova T, Waring GO 4th, Roberts C, Krueger RR, Tomita M. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol 2014;157:885-93. https://doi.org/10.1016/j.ajo.2013.12.024
  33. Asaoka R, Nakakura S, Tabuchi H, Murata H, Nakao Y, Ihara N, et al. The relationship between Corvis ST tonometry measured corneal parameters and intraocular pressure, corneal thickness and corneal curvature. PLoS One 2015;10:e0140385. https://doi.org/10.1371/journal.pone.0140385
  34. Kotecha A, Russell RA, Sinapis A, Pourjavan S, Sinapis D, Garway-Heath DF. Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes. BMC Ophthalmol 2014;14:11. https://doi.org/10.1186/1471-2415-14-11
  35. Knox Cartwright NE, Tyrer JR, Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011;52:4324-9. https://doi.org/10.1167/iovs.09-4798
  36. Elsheikh A, Wang D, Brown M, Rama P, Campanelli M, Pye D. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res 2007;32:11-9. https://doi.org/10.1080/02713680601077145
  37. Daxer A, Misof K, Grabner B, Ettl A, Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci 1998;39:644-8.
  38. Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 2007;33:1371-5. https://doi.org/10.1016/j.jcrs.2007.04.021
  39. Kamiya K, Shimizu K, Ohmoto F. Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg 2009;25:888-93. https://doi.org/10.3928/1081597X-20090917-10
  40. Fontes BM, Ambrosio R Jr, Alonso RS, Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics in eyes with refraction of -19.00 to +9.00 D in healthy Brazilian patients. J Refract Surg 2008;24:941-5. https://doi.org/10.3928/1081597X-20081101-14

Cited by

  1. Comparison of Intraocular Pressures Measured by the Corvis ST and Other Tonometers in Normal Eyes vol.60, pp.12, 2019, https://doi.org/10.3341/jkos.2019.60.12.1250
  2. Analysis of Factors Affecting Corneal Deflection Amplitude in Normal Korean Eyes vol.61, pp.5, 2018, https://doi.org/10.3341/jkos.2020.61.5.538
  3. Time-varying regularity of changes in biomechanical properties of the corneas after removal of anterior corneal tissue vol.20, pp.1, 2018, https://doi.org/10.1186/s12938-021-00948-7