DOI QR코드

DOI QR Code

Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering

  • Vishwakarma, Avinash (Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus) ;
  • Bathula, Sivaiah (Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus) ;
  • Chauhan, Nagendra S. (Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus) ;
  • Bhardwaj, Ruchi (Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus) ;
  • Gahtori, Bhasker (Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus) ;
  • Srivastava, Avanish K. (CSIR - Advanced Materials and Processes Research Institute (AMPRI)) ;
  • Dhar, Ajay (Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus)
  • 투고 : 2018.07.20
  • 심사 : 2018.09.27
  • 발행 : 2018.12.31

초록

SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ~ 1.1 at $900^{\circ}C$ in ntype $Si_{80}Ge_{20}$ nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ${\sim}3.4{\times}10^7K/s$, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ~7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ${\sim}2.1Wm^{-1}K^{-1}$, which corresponds to ~50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.

키워드

참고문헌

  1. D.M. Rowe, CRC Handbook of Thermoelectrics, CRC press, 1995.
  2. J.E. Bernard, A. Zunger, Strain energy and stability of Si-Ge compounds, alloys, and superlattices, Phys. Rev. B 44 (1991) 1663-1681. https://doi.org/10.1103/PhysRevB.44.1663
  3. S.R. Brown, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Yb14MnSb11: new high efficiency thermoelectric material for power generation, Chem. Mater. 18 (2006) 1873-1877. https://doi.org/10.1021/cm060261t
  4. E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder, High temperature thermoelectric efficiency in $Ba_8Ga_{16}Ge_{30}$, Phys. Rev. B 77 (2008) 075203. https://doi.org/10.1103/PhysRevB.77.075203
  5. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, J. Blumm, Effect of substitutions on the thermoelectric figureofmerit of half-Heusler phases at 800 C, Appl. Phys. Lett. 88 (2006) 042106-042106-042103.
  6. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A. Kumar, A. Dhar, Vanadium-doping-induced resonant energy levels for the enhancement of thermoelectric performance in Hf-free ZrNiSn half-Heusler alloys, ACS Appl. Energy Mater. 1 (2018) 757-764. https://doi.org/10.1021/acsaem.7b00203
  7. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, M. Saravanan, A. Dhar, Compositional tuning of ZrNiSn half-Heusler alloys: thermoelectric characteristics and performance analysis, J. Phys. Chem. Solid. 123 (2018) 105-112. https://doi.org/10.1016/j.jpcs.2018.07.012
  8. J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion, J. Eur. Ceram. Soc. 32 (2012) 525-540. https://doi.org/10.1016/j.jeurceramsoc.2011.10.007
  9. M.B. Saddique, M. Rashid, A. Afzal, S.M. Ramay, F. Aziz, A. Mahmood, Ground state opto-electronic and thermoelectric response of cubic $XSnO_3$ (X= Ba, Sr) compounds, Curr. Appl. Phys. 17 (2017) 1079-1086. https://doi.org/10.1016/j.cap.2017.04.019
  10. T. Suriwong, T. Thongtem, S. Thongtem, Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating, Curr. Appl. Phys. 14 (2014) 1257-1262. https://doi.org/10.1016/j.cap.2014.06.024
  11. S. Bathula, M. Jayasimhadri, N. Singh, A. Srivastava, J. Pulikkotil, A. Dhar, R. Budhani, Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys, Appl. Phys. Lett. 101 (2012) 213902. https://doi.org/10.1063/1.4768297
  12. S. Bathula, M. Jayasimhadri, B. Gahtori, N.K. Singh, K. Tyagi, A. Srivastava, A. Dhar, The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys, Nanoscale 7 (2015) 12474-12483. https://doi.org/10.1039/C5NR01786F
  13. T. Harman, M. Walsh, G. Turner, Nanostructured thermoelectric materials, J. Electron. Mater. 34 (2005) L19-L22. https://doi.org/10.1007/s11664-005-0083-8
  14. E. Steigmeier, B. Abeles, Scattering of phonons by electrons in germanium-silicon alloys, Phys. Rev. 136 (1964) A1149. https://doi.org/10.1103/PhysRev.136.A1149
  15. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure‐of‐merit by a bulk nanostructuring approach, Adv. Funct. Mater. 20 (2010) 357-376. https://doi.org/10.1002/adfm.200901512
  16. V. Tkatch, S. Denisenko, O. Beloshov, Direct measurements of the cooling rates in the single roller rapid solidification technique, Acta Mater. 45 (1997) 2821-2826. https://doi.org/10.1016/S1359-6454(96)00377-1
  17. S. Muthiah, R. Singh, B. Pathak, P.K. Avasthi, R. Kumar, A. Kumar, A. Srivastava, A. Dhar, Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique, Nanoscale 10 (2018) 1970-1977. https://doi.org/10.1039/C7NR06195A
  18. D.L. Harame, SiGe and Ge: materials, processing, and devices, The Electrochemical Society, 2006.
  19. B.D. Cullity, Elements of X-ray diffraction, Am. J. Phys. 25 (1957) 394-395. https://doi.org/10.1119/1.1934486
  20. A. Kallel, G. Roux, C. Martin, Thermoelectric and mechanical properties of a hot pressed nanostructured n-type $Si_{80}Ge_{20}$ alloy, Mater. Sci. Eng., A 564 (2013) 65-70. https://doi.org/10.1016/j.msea.2012.11.073
  21. R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D. Aswal, S. Gupta, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys, J. Mater. Chem. A 2 (2014) 6922-6930. https://doi.org/10.1039/c3ta14259k
  22. X. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang, J. Yang, A. Muto, M. Tang, J. Klatsky, Enhanced thermoelectric figureof merit in nanostructured n-type silicon germanium bulk alloy, Appl. Phys. Lett. 93 (2008) 193121. https://doi.org/10.1063/1.3027060
  23. L.-D. Zhao, V.P. Dravid, M.G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci. 7 (2014) 251-268. https://doi.org/10.1039/C3EE43099E
  24. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489 (2012) 414. https://doi.org/10.1038/nature11439
  25. Z. Zamanipour, D. Vashaee, Comparison of thermoelectric properties of p-type nanostructured bulk $Si_{0.8}Ge_{0.2}$ alloy with $Si_{0.8}Ge_{0.2}$ composites embedded with $CrSi_2$ nano-inclusisons, J. Appl. Phys. 112 (2012) 093714. https://doi.org/10.1063/1.4764919
  26. Z. Zamanipour, X. Shi, A.M. Dehkordi, J.S. Krasinski, D. Vashaee, The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p‐type silicon germanium alloy, Phys. Status Solidi (a) 209 (2012) 2049-2058. https://doi.org/10.1002/pssa.201228102
  27. B. Khasimsaheb, N.K. Singh, S. Bathula, B. Gahtori, D. Haranath, S. Neeleshwar, The effect of carbon nanotubes (CNT) on thermoelectric properties of lead telluride (PbTe) nanocubes, Curr. Appl. Phys. 17 (2017) 306-313. https://doi.org/10.1016/j.cap.2016.05.026
  28. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater. 3 (2015) 041506. https://doi.org/10.1063/1.4908244
  29. P.F. Poudeu, J. D'Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, M.G. Kanatzidis, Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in $Pb_{9.6}Sb_{0.2}Te_{10-x}Se_x$ bulk materials, J. Am. Chem. Soc. 128 (2006) 14347-14355. https://doi.org/10.1021/ja0647811

피인용 문헌

  1. Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation vol.6, pp.1, 2018, https://doi.org/10.1007/s40948-019-00134-z
  2. Dendritic Growth in Si1−xGex Melts vol.11, pp.7, 2021, https://doi.org/10.3390/cryst11070761
  3. Enhanced Thermoelectric Performance of Polycrystalline Si0.8Ge0.2 Alloys through the Addition of Nanoscale Porosity vol.11, pp.10, 2018, https://doi.org/10.3390/nano11102591