DOI QR코드

DOI QR Code

고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가

Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell

  • 김지홍 (한국에너지기술연구원 연료전지연구실) ;
  • 김민진 (한국에너지기술연구원 연료전지연구실) ;
  • 김진수 (일도에프엔씨(주))
  • KIM, JI-HONG (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • KIM, MINJIN (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • KIM, JINSOO (ILDO F&C CO., LTD)
  • 투고 : 2018.08.07
  • 심사 : 2018.10.30
  • 발행 : 2018.10.30

초록

Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.

키워드

참고문헌

  1. J. Lamrminie and A. Dicks, "Fuel Cell System Expalined", John Wiley, 2003.
  2. F. Barbir, "PEM fuel cells: theory and practice", Academic Press Series series editor, Elsevier Academic Press, 2005.
  3. C. Bernay, M. Marchand, and M. Cassir, "Prospects of Different Fuel Cell Technologies for Vehicle Applications", Journal of Power Sources, Vol. 108, No. 1, 2002, pp. 139-152. https://doi.org/10.1016/S0378-7753(02)00029-0
  4. J. Garche and L. Jorissen, "Applications of Fuel Cell Technology: Status and Perspectives", The Electrochemical Society Interface, 2015, pp. 39-43.
  5. C. S. Spiegel, "Design & Building Fuel Cells", McGraw-Hill, 2007.
  6. V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, and P. Siano, "Recent advances and challenges of fuel cell based power system architectures and control - A review", Renewable and Sustainable Energy Reviews, Vol. 73, 2017, pp. 10-18. https://doi.org/10.1016/j.rser.2017.01.148
  7. H. JJanBen, J. Supra, L. Luke, W. Lehnert, and D. Stolten, "Development of HT-PEFC stacks in the KW range", International Journal of Hydrogen Energy, Vol. 38, No. 11, 2013, pp. 4705-4713. https://doi.org/10.1016/j.ijhydene.2013.01.127
  8. S. S. Araya, F. Zhou, V. Liso, S. L. Sahlin, J. R. Vang, S. Thomas, X. Gao, C. Jeppesen, and S. K. Kaer, "A comprehensive review of PBI-based high temperature PEM fuel cells", International Journal of Hydrogen Energy, Vol. 41, No. 46, 2016, pp. 21310-21344. https://doi.org/10.1016/j.ijhydene.2016.09.024
  9. R. E. Rosli, A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque, "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system", International Journal of Hydrogen Energy, Vol. 42, No. 14, 2017, pp. 9293-9314. https://doi.org/10.1016/j.ijhydene.2016.06.211
  10. M. Nasri and D. Dickinson, "Thermal management of fuel cell-driven vehicles using HT-PEM and hydrogen storage", In 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2014, pp. 1-6.
  11. R. Kerr, H. R. Garcia, M. Rastedt, P. Wagner, S. M. Alfaro, M. T. Romero, C. Terkelsen, T. Steenberg, and H. A. Hjuler, "Lifetime and degradation of high temperature PEM membrane electrode assemblies", International Journal of Hydrogen Energy, Vol. 40, No. 46, 2015, pp. 16860-16866. https://doi.org/10.1016/j.ijhydene.2015.07.152
  12. T. J. Schmidt and J. Baurmeister, "Properties of high-temperature PEFC $Celtec^{(R)}$-P 1000 MEAs in start/stop operation mode", Journal of Power Sources, Vol. 176, No. 2, 2008, pp. 428-434. https://doi.org/10.1016/j.jpowsour.2007.08.055
  13. A. Jo, K. Oh, J. Lee, D. Han, D. Kim, J. Kim, and Y. J. Sohn, "Modeling and analysis of a 5 kWe HT-PEMFC system for residential heat and power generation", International Journal of Hydrogen Energy, Vol. 42, No. 3, 2017, pp. 1698-1714. https://doi.org/10.1016/j.ijhydene.2016.10.152
  14. W. Y. Lee, M. Kim, Y. J. Sohn, and S. G. Kim, "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system", Energy, Vol. 113, 2016, pp. 1062-1070. https://doi.org/10.1016/j.energy.2016.07.093
  15. W. Y. Lee, M. Kim, Y. J. Sohn, and S. G. Kim, "Performance of a hybrid system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator", Energy, Vol. 141, 2017, pp. 2397-2407. https://doi.org/10.1016/j.energy.2017.11.129
  16. V. P. McConnell, "High-temperature PEM fuel cells: Hotter, simpler, cheaper", Fuel Cells Bulletin, Vol. 2009, No. 12, 2009, pp. 12-16. https://doi.org/10.1016/S1464-2859(09)70411-0
  17. L. Luke, H. JanBen, M. Kvesic, W. Lehnert, and D. Stolten, "Performance analysis of HT-PEFC stacks", International Journal of Hydrogen Energy, Vol. 37, No. 11, 2012, pp. 9171-9181. https://doi.org/10.1016/j.ijhydene.2012.02.190
  18. J. Kim, M. Kim, T. Kang, Y. J. Sohn, T. Song, and K. H. Choi, "Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells", Energy, Vol. 66, 2014, pp. 41-49. https://doi.org/10.1016/j.energy.2013.08.053
  19. S. P. Jung, C. I. Lee, C. C. Chen, W. S. Chang, and C. C. Yang, "Development of novel proton exchange membrane fuel cells using stamped metallic bipolar plates", Journal of Power Sources, Vol. 283, 2015, pp. 429-442. https://doi.org/10.1016/j.jpowsour.2015.02.145
  20. P. Alnegren, J. G. Grolig, J. Ekberg, G. Goransson, and J. E. Svensson, "Metallic Bipolar Plates for High Temperature Polymer Electrolyte Membrane Fuel Cells", Fuel Cells, Vol. 16, No. 1, 2016, pp. 39-45. https://doi.org/10.1002/fuce.201500068
  21. D. Lee and D. G. Lee, "Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)", Journal of Power Sources, Vol. 327, 2016, pp. 119-126. https://doi.org/10.1016/j.jpowsour.2016.07.045
  22. K. Kang, S. Park, A. Jo, K. Lee, and H. Ju, "Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites", International Journal of Hydrogen Energy, Vol. 42, No. 3, 2017, pp. 1691-1697. https://doi.org/10.1016/j.ijhydene.2016.05.027
  23. D. Lee, J. W. Lim, and D. G. Lee, "Cathode/anode integrated composite bipolar plate for high-temperature PEMFC", Composite Structures, Vol. 167, 2017, pp. 144-151. https://doi.org/10.1016/j.compstruct.2017.01.080