DOI QR코드

DOI QR Code

Recent Application Technologies of Rumen Microbiome Is the Key to Enhance Feed Fermentation

최근 반추위 미생물 군집의 응용기술을 이용한 사료효율 개선연구

  • Islam, Mahfuzul (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Sang-Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University)
  • 이스람 마푸줄 (순천대학교 동물자원과학과 반추영양혐기미생물연구실) ;
  • 이상석 (순천대학교 동물자원과학과 반추영양혐기미생물연구실)
  • Received : 2018.09.10
  • Accepted : 2018.10.15
  • Published : 2018.10.30

Abstract

Rumen microbiome consists of a wide variety of microorganisms, such as bacteria, archaea, protozoa, fungi, and viruses, that are in a symbiotic relationship in a strict anaerobic environment in the rumen. These rumen microbiome, a vital maker, play a significant role in feed fermentation within the rumen and produce different volatile fatty acids (VFAs). VFAs are essential for energy metabolism and protein synthesis of the host animal, even though emission of methane gas after feed fermentation is considered a negative indicator of loss of dietary energy of the host animal. To improve rumen microbial efficiency, a variety of approaches, such as feed formulation, the addition of natural feed additives, dietary feed-microbes, etc., have taken to increase ruminant performance. Recently with the application of high-throughput sequencing or next-generation sequencing technologies, especially for metagenomics and metatranscriptomics of rumen microbiomes, our understanding of rumen microbial diversity and function has significantly increased. The metaproteome and metabolome provide deeper insights into the complicated microbial network of the rumen ecosystem and its response to different ruminant diets to improve efficiency in animal production. This review summarized some recent advances of rumen microbiome techniques, especially "meta-omics," viz. metagenomic, metatranscriptomic, metaproteomic, and metabolomic techniques to increase feed fermentation and utilization in ruminants.

반추위 속에는 박테리아, 고세균, 프로토조아, 곰팡이 및 바이러스와 같은 다양한 미생물들이 편성의 혐기조건에서 공생하고 있다. 사료의 발효에 중요한 역할을 하고 있는 반추위 미생물은 위내 발효과정에서 에너지 손실에 영향을 주는 메탄의 발생을 제외하면 에너지와 단백질 대사에 필수적인 다양한 휘발성 지방산을 생산한다. 반추위내 미생물의 이용효율을 개선시키기 위해 사료배합비조절, 천연사료첨가제, 생균제첨가 등의 다양한 접근방법들이 사용되고 있다. 최근에 반추위 군집에 대한 메타유전체 또는 메타전사체와 같은 차세대 유전체 해독기술 또는 차세대 시퀀싱 기술의 적용으로 반추위 미생물의 다양성 및 기능에 대한 이해가 크게 증가하였다. 특히 메타단백질체와 메타대사체는 반추위 생태계의 복잡한 미생물네트워크에 대한 더 깊은 통찰력을 제공할 뿐만 아니라, 다양한 반추가축용 사료에 대한 반응을 제공함으로서 생산효율을 개선시키는데 기여하였다. 본 논문에서는 반추위내 사료의 발효와 이용을 향상시키기 위한 메타오믹스 기술, 즉, 메타유전체, 메타전사체, 메타단백질체 및 메타대사체의 최신 응용기술을 요약하고자 한다.

Keywords

References

  1. Bao, L., Huang, Q., Chang, L., Sun, Q., Zhou, J. and Lu, H. 2012. Cloning and characterization of two ${\beta}$-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl. Biochem. Biotechnol. 166, 72-86. https://doi.org/10.1007/s12010-011-9405-x
  2. Beloqui, A., Pita, M., Polaina, J., Martinez-Arias, A., Golyshina, O. V., Zumarraga, M., Yakimov, M. M., Garcia-Arellano, H., Alcalde, M., Fernandez, V. M., Elborough, K., Andreu, J. M., Ballesteros, A., Plou, F. J., Timmis, K. N., Ferrer, M. and Golyshin, P. N. 2006. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J. Biol. Chem. 281, 22933-22942.
  3. Berg, M. M, E., Yeoman, C. J., Chia, N. Tringe, S. G., Angly, F. E., Edwards, R. A., Flint, H. J., Lamed, R., Bayer, E. A. and White, B. A. 2012. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ. Microbiol. 14, 207-227. https://doi.org/10.1111/j.1462-2920.2011.02593.x
  4. Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567-590.
  5. Biswas, A. A., Lee, S. S., Mamuad, L. L., Kim, S. H., Choi, Y. J., Lee, C., Lee, K., Bae, G. S. and Lee, S. S. 2018. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim. Sci. J. 89, 114-121. https://doi.org/10.1111/asj.12913
  6. Biswasa, A. A., Lee, S. S., Mamuad, L. L., Kim, S. H., Choi, Y. J., Bae, G. S., Lee, K., Sung, H. G. and Lee, S. S. 2016. Use of lysozyme as a feed additive on in vitro rumen fermentation and methane emission. Asian Australas. J. Anim. Sci. 29, 1601-1607.
  7. Brown, M. S., Ponce, C. H. and Pulikanti, R. 2006. Adaptation of beef cattle to high-concentrate diets: performance and ruminal metabolism. J. Anim. Sci. 84, 25-33. https://doi.org/10.2527/2006.84125x
  8. Carro, M. D. and Ranilla, M. J. 2003. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen microorganisms in vitro. Br. J. Nutr. 90, 617-623. https://doi.org/10.1079/BJN2003935
  9. Chaucheyras-Durand, F. and Ossa, F. 2014. Review: The rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci. 30, 1-12. https://doi.org/10.15232/S1080-7446(15)30076-0
  10. Chen, Y. B., Lan, D. L., Tangi, C., Yang, X. N. and Li, J. 2015. Effect of DNA extraction methods on the apparent structure of yak rumen microbial communities as revealed by 16S rDNA sequencing. Pol. J. Microbiol. 64, 29-36.
  11. Chiquette, J., Talbot, G., Markwell, F., Nili, N. and Forster, R. J. 2007. Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate- fed dairy cows: effect on ruminal fermentation, cellulolytic populations and in sacco digestibility. Can. J. Anim. Sci. 87, 237-249.
  12. Coleman, G. S., Laurie, J. I., Bailey, J. E. and Holdgate, S. A. 1976. The cultivation of cellulolytic protozoa isolated from the rumen. J. Gen. Microbiol. 95, 144-150. https://doi.org/10.1099/00221287-95-1-144
  13. Comtet-Marre, S., Parisot, N., Lepercq, P., Chaucheyras- Durand, F., Mosoni, P., Peyretaillade, E., Bayat, A. R., Shingfield, K. J., Peyret, P. and Forano, E. 2017. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front. Microbiol. 8, 67.
  14. Cotta, M. A. 1988. Amylolytic activity of selected species of ruminal bacteria. Appl. Environ. Microbiol. 54, 772-776.
  15. Cotta, M. A. 1992. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl. Environ. Microbiol. 58, 48-54.
  16. Counotte, G. and Prins, R. 1981. Regulation of lactate metabolism in the rumen. Vet. Res. Commun. 5, 101-115.
  17. Dashtban, M., Schraft, H. and Qin, W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5, 578-595.
  18. Deusch, S. and Seifert, J. 2015. Catching the tip of the iceberg- evaluation of sample preparation protocols for the metaproteomic studies of the rumen microbiota. Proteomics 15, 1-6. https://doi.org/10.1002/pmic.201570013
  19. Deusch, S., Camarinha-Silva, A., Conrad, J., Beifuss, U., Rodehutscord, M. and Seifert, J. 2017. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front. Microbiol. 8, 1605. https://doi.org/10.3389/fmicb.2017.01605
  20. Driscoll, C. B., Otten, T. G., Brown, N. M. and Dreher, T. W. 2017. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture. Stand. Genomic Sci. 12, 9. https://doi.org/10.1186/s40793-017-0224-8
  21. Duskova, D. and Marounek, M. 2001. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol. 33, 159-163.
  22. Elghandour, M. M. Y., Salem, A. Z. M., Castaneda, J. S. M., Camacho, L. M., Kholif, A. E. and Chagoya, J. C. V. 2015. Direct-fed microbes: a tool for improving the utilization of low-quality roughages in ruminants. J. Integr. Agric. 14, 526-533.
  23. Ezema, C. 2013. Probiotics in animal production: a review. J. Vet. Med. Anim. Health 5, 308-316.
  24. FAO/WHO. 2001. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina: Food and Agriculture Organization of the United Nations and World Health Organization. p. 30.
  25. Forsberg, C. W., Lovelock, L. K., Krumholz, L. and Buchanan- Smith, J. G. 1984. Protease activities of rumen protozoa. Appl. Environ. Microbiol. 47,101-110.
  26. Fouts, D. E., Szpakowski, S., Purushe, J., Torralba, M., Waterman, R. C., MacNeil, M. D., Alexander, L. J. and Nelson, K. E. 2012. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One 7, e48289. https://doi.org/10.1371/journal.pone.0048289
  27. Fuentes, M. C., Calsamiglia, S., Cardozo, P. W. and Vlaeminck, B. 2009. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci. 92, 4456-4466.
  28. Fuguang, X., Xuemei, N., Xiaohua, P., Shanshan, Z., Linshu, J. and Xiong, B. 2017. Application of multi omics technologies in ruminants research. Dairy Vet. Sci. J. 1, 555563.
  29. Gharechahi, J. and Salekdeh, G. H. 2018. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocelluloses degradation and fermentation. Biotechnol. Biofuels 11, 216. https://doi.org/10.1186/s13068-018-1214-9
  30. Golder, H. M., Denman, S., McSweeney, C. and Lean, I. J. 2016 Metabolome and microbiome associations after a grain and sugar challenge. J. Anim. Sci. 94, 783-784.
  31. Golder, H. M., Thomson, J., Denman, S., McSweeney, C. and Lean, I. J. 2016. Markers associated with metabolome, and microbiome measures in a grain and sugar challenge in dairy heifers. J. Anim. Sci. 94, 194.
  32. Gonzaleza, A. R. C., Barrazab, M. E., B., Viverosb, J. D. and Martinez, A. C. 2014. Rumen microorganisms and fermentation. Arch. Med. Vet. 46, 349-361.
  33. Hart, E. H., Creevey, C. J., Hitch, T. and Kingston-Smith, A. H. 2018. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Sci. Rep. 8, 10504. https://doi.org/10.1038/s41598-018-28827-7
  34. Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H. and Global Rumen Census Collaborators. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567. https://doi.org/10.1038/srep14567
  35. Hernandez-Sanabria, E., Guan, L. L., Goonewardene, L. A., Li, M., Mujibi, D. F., Stothard, P., Moore, S. S., Leon-Quintero, M. C. 2010. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Appl. Environ. Microbiol. 76, 6338-6350. https://doi.org/10.1128/AEM.01052-10
  36. Hodrova, B., Kopecny, J. and Petr, O. 1995. Interaction of the rumen fungus Orpinomyces joyonii with Megasphaera elsdenii and Eubacterium limosum. Lett. Appl. Microbiol. 21, 34-37. https://doi.org/10.1111/j.1472-765X.1995.tb01001.x
  37. Hook, S. E., Wright, A. D. and McBride, B. W. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 30, 945785.
  38. Hristov, A. N., Ivan, M., Neill, L. and McAllister, T. A. 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol. 105, 163-184.
  39. Hu, W., Wu, Y., Liu, J., Guo, Y. and Ye, J. 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluiud. J. Zhejiang Univ. Sci. B. 6, 787-792.
  40. Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Archiv. Mikrobiol. 59, 158-164. https://doi.org/10.1007/BF00406327
  41. IPCC (Intergovernmental Panel on Climate Change. Climate change). 2014. Synthesis report 2014.
  42. IPCC (Intergovernmental Panel on Climate Change. Climate change). 2006. Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use. V. 4.
  43. Iqbal, M. W., Zhang, Q., Yang, Y., Li, L., Zou, C., Huang, C. and Lin, B. 2018. J. Appl. Anim. Res. 46, 740-748. https://doi.org/10.1080/09712119.2017.1394859
  44. Iqbal, M. W., Zhang, Q., Yang, Y., Zou, C., Li, L., Liang, X., Wei, S. and Lin, B. 2018. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Anim. Nutr. 4, 100-108. https://doi.org/10.1016/j.aninu.2017.10.005
  45. Ivan, M., Neill, L. and Entz, T. 2000. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J. Anim. Sci. 78, 750-759.
  46. Ivan, M., Petit, H. V., Chiquette, J. and Wright, A. D. 2012. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. Br. J. Nutr. 31, 1-8.
  47. Jami, E., White, B. A. and Mizrahi, I. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9, e85423. https://doi.org/10.1371/journal.pone.0085423
  48. Jatkauskas, J. and Vrotniakien, V. 2007. Effect of L-plantarum, Pediococcus acidilactici, Enterococcus faecium and L-lactis microbial supplementation of grass silage on the fermentation characteristics in the rumen of dairy cows. Vet. Zootec. 40, 29-34.
  49. Jeong, C. D., Mamuad, L. L., Kim, S. H., Choi, Y. J., Soriano, A. P., Cho, K. K., Jeon, C. O., Lee, S. S. and Lee, S. S. 2015. Effect of soybean meal and soluble starch on biogenic amine production and microbial diversity using in vitro rumen fermentation. Asian Australas. J. Anim. Sci. 28, 50-57.
  50. Jiao, J., Lu, Q., Tan, Z., Guan, L., Zhou, C., Tang, S. and Han, X. 2014. In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe 28, 168-177. https://doi.org/10.1016/j.anaerobe.2014.06.008
  51. Joch, M., Mrazek, J., Skrivanova, E., Cermak, L. and Marounek, M. 2018. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. J. Anim. Physiol. Anim. Nutr. 102, 869-881. https://doi.org/10.1111/jpn.12910
  52. Johnson, D. E. and Ward, G. M. 1996. Estimates of animal methane emissions. Environ. Monit. Assess. 42, 113-141. https://doi.org/10.1007/BF00394045
  53. Khan, R. U., Naz, S., Dhama, K., Karthik, K., Tiwari, R., Abdelrahman, M. M., Alhidary, I. A. and Zahoor, A. 2016. Direct-fed microbial: beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. Int. J. Pharm. 12, 220-231.
  54. Kim, S. H., Mamuad, L. L., Jeong, C. D., Choi, Y. J., Lee, S. S., Ko, J. Y. and Lee, S. S. 2013. In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian Australas. J. Anim. Sci. 26, 1698-1707.
  55. Kim, S. H., Mamuad, L. L., Kim, D. W., Kim, S. K. and Lee, S. S. 2016. Fumarate reductase-producing enterococci reduce methane production in rumen fermentation in vitro. J. Microbiol. Biotechnol. 26, 558-566.
  56. Kim, S. H., Mamuad, L. L., Kim, E. J., Sung, H. G., Bae, G. S., Cho, K. K., Lee, C. and Lee, S. S. 2018. Effect of different concentrate diet levels on rumen fluid inoculum used for determination of in vitro rumen fermentation, methane concentration, and methanogen abundance and diversity, Ital. J. Anim. Sci. 17, 359-367.
  57. Kittelmann, S., Seedorf, H., Walters, W. A., Clemente, J. C., Knight, R., Gordon J. I. and Janssen, P. H. 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8, e47879. https://doi.org/10.1371/journal.pone.0047879
  58. Lewis, K. A., Tzilivakis, J., Green, A., Warner, D. J., Stedman, A. and Naseby, D. 2013. Review of substances/agents that have direct beneficial effect on the environment: mode of action and assessment of efficacy. EFSA supp. EN-440.
  59. Li, F. and Guan, L. L. 2017. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83, e00061-17.
  60. Li, F., Neves, A. L. A., Ghoshal, B. and Guan, L. L. 2018. Symposium review: Mining metagenomic and metatranscriptomic data for clues about microbial metabolic functions in ruminants. J. Dairy Sci. 101, 5605-5618. https://doi.org/10.3168/jds.2017-13356
  61. Li, F., Zhou, M., Ominski, K. and Guan, L. L. 2016. Does the rumen microbiome play a role in feed efficiency of beef cattle? J. Anim. Sci. 94, 44-48.
  62. Liu, K., Wang, J., Bu, D., Zhao, S., McSweeney, C., Yu, P. and Li, D. 2009. Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem. Biophys. Res. Commun. 385, 605-611.
  63. Lopez, S., Valdez, C., Newbold, C. J. and Wallace, R. J. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutri. 81, 59-64. https://doi.org/10.1017/S000711459900015X
  64. Malmuthuge, N., Griebel, P. J. and Guan, L. L. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol. 80, 2021-2028. https://doi.org/10.1128/AEM.03864-13
  65. Mamuad, L, Kim, S. H., Jeong, C. D., Choi, Y. J., Jeon, C. O. and Lee, S. S. 2014. Effect of Fumarate Reducing Bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. J. Microbiol. 52, 120-128. https://doi.org/10.1007/s12275-014-3518-1
  66. Mann, E., Wetzels, S. U., Wagner, M., Zebeli, Q. and Schmitz-Esser, S. 2018. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front. Microbiol. 9, 43.
  67. Mao, S. Y., Huo, W. J. and Zhu, W. Y. 2014. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ. Microbiol. 18, 525-541.
  68. Martin, S. C. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76, 3123-3132.
  69. McAllister, T. A., Rode, L. M., Major, D. J., Cheng, K. J. and Buchanan-Smith, J. G. 1990. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci. 70, 571-579.
  70. McCann, J. C., Wickersham, T. A. and Loor, J. J. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 8, 109-125.
  71. McSweeney, C. and Mackie, R. 2012. Microorganisms and ruminant digestion: state of knowledge, trends and future prospects. Commission on Genetic Resources for Food and Agriculture. Background study paper No. 61. Food Agric. Org. United Nations, Rome, Italy.
  72. Michalet-Doreau, B., Fernandez, I. and Fonty, G. 2002. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. J. Anim. Sci. 80, 790-796.
  73. Min, B. R., Pinchak, W. E., Anderson, R. C. and Hume, M. E., 2016. In vitro bacterial growth and in vivo rumen microbiota populations associated with potential blot dynamics in winter wheat. J. Anim. Sci. 84, 2546-2552.
  74. Minato, H., Endo, A., Higuchi, M., Comoto, Y. and Vemura, T. 1966. Ecological treatise on the rumen fermentation. I. The fractionation of bacteria attached to the rumen digesta solids. J. Gen. Appl. Microbiol. 12, 39-52. https://doi.org/10.2323/jgam.12.39
  75. Moniello, G., Richardson, A. J., Duncan, S. H. and Stewart, C. S. 1996. Effects of coumarin and sparteine on attachment to cellulose and cellulolysis by Neocallimastix frontalis RE1. Appl. Environ. Microbiol. 62, 4666-4668.
  76. Myer, P. R., Freetly, H. C., Wells, J. E., Smith, T. P. L. and Kuehn, L. A. 2017. Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. J. Anim. Sci. 95, 3215-3224.
  77. Myer, P. R., Smith, T. P. L., Wells, J. E., Kuehn, L. A. and Freetly, H. C. 2015. Rumen Microbiome from Steers Differing in Feed Efficiency. PLoS One 10, e0129174. https://doi.org/10.1371/journal.pone.0129174
  78. Nagaraja, T. G., Newbold, C. J., Van Nevel, C. J. and Demeyer, D. I. 2012. Manipulation of rumen fermentation. pp. 523-600. In: Hobson, P. N. and Stewart, C. S. (eds), The rumen microbial ecosystem. Blackie Academic and Professional, London.
  79. Newbold, C. J., Lopez, S., Nelson, N., Ouda, J. O., Wallace, R. J. and Moss, A. R. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br. J. Nutr. 94, 27-35. https://doi.org/10.1079/BJN20051445
  80. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021.
  81. Oeztuerk, H., Schroeder, B., Beyerbach, M. and Breves, G. 2005. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J. Dairy Sci. 88, 2594-2600. https://doi.org/10.3168/jds.S0022-0302(05)72935-0
  82. Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C. and Iliopoulos, I. 2015. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform. Biol. Insights 9, 75-88.
  83. Pitta, D. W., Indugu, N., Kumar, S., Vecchiarelli, B., Sinha, R., Baker, L. D., Bhukya, B. and Ferguson, J. D. 2016. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe 38, 50-60. https://doi.org/10.1016/j.anaerobe.2015.12.003
  84. Prive, F., Newbold, C. J., Kaderbhai, N. N., Girdwood, S. G., Golyshina, O. V., Golyshin, P. N., Scollan, N. D. and Huws, S. A. 2015. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Appl. Microbiol. Biotechnol. PMID: 25575887.
  85. Rajas-Roman, L. A., Castro-Perez, B. I., Estrada-Angulo, A., Angulo-Montoya, C. and Yocupicio-Rocha, J. A. et al. 2017. Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: finishing lambs. Small Rumin. Res. 153, 137-141. https://doi.org/10.1016/j.smallrumres.2017.06.010
  86. Rey, M., Enjalbert, F., Combes, S., Cauquil, L., Bouchez, O. and Monteils, V. 2014. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J. Appl. Microbiol. 116, 245-257.
  87. Rezaeian, M., Beakes, G. W. and Parker, D. S. 2004. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol. Res. 108, 1227-1233. https://doi.org/10.1017/S0953756204000929
  88. Rivera-Mendez, C., Plascencia, A., Torrentera, N. and Zinn, R. A. 2017. Effect of level and source of supplemental tannin on growth performance of streers during the late finishing phase. J. Appl. Anim. Res. 45, 199-203. https://doi.org/10.1080/09712119.2016.1141776
  89. Rosenberg, E. and Zilber-Rosenberg, I. 2016. Interaction between the microbiome and diet: the hologenome concept. J. Nutri. Food Sci. 6, 545.
  90. Saleem, F., Ametaj, B. N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S. M. and Wishart, D. S. 2012. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 95, 6606-6623. https://doi.org/10.3168/jds.2012-5403
  91. Saleem, F., Bouatra, S., Guo, A. C., Psychogios, N., Mandal, R., Dunn, S. M., Ametaj, B. N. and Wishart, D. S. 2013. The bovine ruminal fluid metabolome. Metabolomics 9, 360-378. https://doi.org/10.1007/s11306-012-0458-9
  92. Seo, J. K., Kim, S. W., Kim, M. H., Upadhaya, S. D., Kam, D. K. and Ha, J. K. 2010. Direct-fed microbials for ruminant animals. Asian Australas. J. Anim. Sci. 23, 1657-1667. https://doi.org/10.5713/ajas.2010.r.08
  93. Shabat, S. K., Sasson, G., Doron-Faigenboim, A., Durman, T., Yaacoby, S., Berg M. M. E., White, B. A., Shterzer, N. and Mizrahi, I. 2016. Specific microbiome-dependent mech anisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958-2972. https://doi.org/10.1038/ismej.2016.62
  94. Singh, K. M., Jakhesara, S. J., Koringa, P. G., Rank, D. N. and Joshi, C. G. 2012. Metagenomic analysis of virulenceassociated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene 507, 146-151. https://doi.org/10.1016/j.gene.2012.07.037
  95. Soriano, A. P., Mamuad, L. L., Kim, S. H., Choi, Y. J., Jeong, C. D., Bae, G. S., Chang, M. B. and Lee, S. S. 2014. Effect of Lactobacillus mucosae on in vitro rumen fermentation characteristics of dried brewers grain, methane production and bacterial diversity. Asian Australas. J. Anim. Sci. 27, 562-1570.
  96. Tom, W., Judy, J. V., Kononoff, P. J. and Fernando, S. C. 2016. 16S rRNA bacterial sequences suggest dietary intervention can be used to change microbial community structure to reduce methane emission in holstein dairy cattle. J. Anim. Sci. 94, 794.
  97. Tsai, Y. C., Conlan, S., Deming, C., Segre, J. A., Kong, H. H., Korlach, J. and Oh, J. 2016. Resolving the complexity of human skin metagenomes using single-molecule sequencing. MBio 7, e01948-15.
  98. Vibhute, V. M., Shelke, R. R., Chavan, S. D. and Nage, S. P. 2011. Effect of probiotics supplementation on the performance of lactating crossbred cows. Vet. World 4, 557-561.
  99. Wallace, R. J., McKain, N., Broderick, G. A., Rode, L. M., Walker, N. D., Newbold, C. J. and Kopecny, J. 1997. Peptidases of the rumen bacterium, Prevotella ruminicola. Anaerobe 3, 35-42. https://doi.org/10.1006/anae.1996.0065
  100. Wallace, R. J., Rooke, J. A., McKain, N., Duthie, C. A., Hyslop, J. J., Ross, D. W., Waterhouse, A., Watson, M. and Roehe, R. 2015. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 16, 839. https://doi.org/10.1186/s12864-015-2032-0
  101. Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13, 59-67.
  102. Weimer, P. J. 1996. Why don't ruminal bacteria digest cellulose faster? J. Dairy Sci. 79, 1496-1502. https://doi.org/10.3168/jds.S0022-0302(96)76509-8
  103. Whiteley, A. S., Jenkins, S., Waite, I., Kresoje, N., Payne, H., Mullan, B., Allcock, R. and O'Donnell, A. 2012. Microbial 16S rRNA ion tag and community metagenome sequencing using the ion torrent (PGM) platform. J. Microbiol. Methods 91, 80-88. https://doi.org/10.1016/j.mimet.2012.07.008
  104. Wina, E., Muetzel, S. and Becker, K. 2005. The impact of saponins or saponin-containing plant on ruminant production-a review. J. Agric. Food Chem. 53, 8093-8105. https://doi.org/10.1021/jf048053d
  105. Yanagita, K., Kamagata, Y., Kawaharasaki, M., Suzuki, T., Nakamura, Y. and Minato, H. 2000. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem. 64, 1737-1742. https://doi.org/10.1271/bbb.64.1737
  106. Zened, A., Combes, S., Cauquil, L. Mariette, J., Klopp, C., Bouchez, O., Troegeler-Meynadier, A. and Enjalbert, F. 2013. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 83, 504-514. https://doi.org/10.1111/1574-6941.12011
  107. Zhou, M., Peng, Y. J., Chen, Y., Klinger, C. M., Oba, M., Liu, J. X. and Guan, L. L. 2018. Assessment of microbiome changes after rumen transfaunation: implications on improving feed efficiency in beef cattle. Microbiome 6, 62. https://doi.org/10.1186/s40168-018-0447-y