References
-
Ai, D. et al. 2012. Activation of ER stress and mTORC1 suppresses hepatic sortilin
${\backslash}$ _1 levels in obese mice. J. Clin. Invest. 122, 1677-1687. https://doi.org/10.1172/JCI61248 -
Amemiya-Kudo, M. et al. 2000. Promoter analysis of the mouse sterol regulatory element-binding protein
$\backslash$ _1c gene. J. Biol. Chem. 275, 31078-31085. https://doi.org/10.1074/jbc.M005353200 - Aylon, Y. et al. 2016. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes Dev. 30, 786-797. https://doi.org/10.1101/gad.274167.115
- Bose, S. K. et al. 2014. Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J. Virol. 88, 4195-4203. https://doi.org/10.1128/JVI.03327-13
- Broer, S. and Broer, A. 2017. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 474, 1935-1963.
- Brown, M. S. and Goldstein, J. L. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340. https://doi.org/10.1016/S0092-8674(00)80213-5
- Brown, M. S. and Goldstein, J. L. 2008. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95-96. https://doi.org/10.1016/j.cmet.2007.12.009
- Diamond, R. H. et al. 1993. Novel delayed-early and highly insulin-induced growth response genes. Identification of HRS, a potential regulator of alternative pre-mRNA splicing. J. Biol. Chem. 268, 15185-15192.
- Duvel, K. et al. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183. https://doi.org/10.1016/j.molcel.2010.06.022
- Engelking, L. J. et al. 2006. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. J. Clin. Invest. 116, 2356-2365.
- Fang, S. et al. 2001. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA. 98, 14422-14427.
-
Fujii, N. et al. 2017. Sterol regulatory element-binding protein
$\backslash$ _1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction. Aging Cell 16, 508-517. https://doi.org/10.1111/acel.12576 - Giandomenico, V., Simonsson, M., Gronroos, E. and Ericsson, J. 2003. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol. 23, 2587-2599. https://doi.org/10.1128/MCB.23.7.2587-2599.2003
- Goldstein, J. L., DeBose-Boyd, R. A. and Brown, M. S. 2006. Protein sensors for membrane sterols. Cell 124, 35-46. https://doi.org/10.1016/j.cell.2005.12.022
- Gong, X. et al. 2015. Structure of the WD40 domain of SCAP from fission yeast reveals the molecular basis for SREBP recognition. Cell Res. 25, 401-411. https://doi.org/10.1038/cr.2015.32
-
Guo, F. and Cavener, D. R. 2007. The GCN2
$eIF2{\alpha}$ kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab. 5, 103-114. https://doi.org/10.1016/j.cmet.2007.01.001 - Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L. and Brown, M. S. 2001. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 276, 4365-4372. https://doi.org/10.1074/jbc.M007273200
- Hirano, Y., Yoshida, M., Shimizu, M. and Sato, R. 2001. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J. Biol. Chem. 276, 36431-36437. https://doi.org/10.1074/jbc.M105200200
- Horton, J. D., Goldstein, J. L. and Brown, M. S. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131. https://doi.org/10.1172/JCI0215593
- Horton, J. D., Bashmakov, Y., Shimomura, I. and Shimano, H. 1998. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl Acad. Sci. USA. 95, 5987-5992. https://doi.org/10.1073/pnas.95.11.5987
- Hotamisligil, G. S. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900-917. https://doi.org/10.1016/j.cell.2010.02.034
- Howell, J. J., Ricoult, S. J., Ben-Sahra, I. and Manning, B. D. 2013. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans. 41, 906-912. https://doi.org/10.1042/BST20130041
- Hughes, A. L., Todd, B. L. and Espenshade, P. J. 2005. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120, 831-842. https://doi.org/10.1016/j.cell.2005.01.012
- Im, S. S. et al. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13, 540-549. https://doi.org/10.1016/j.cmet.2011.04.001
- Im, S. S. and Osborne, T. F. 2012. Protection from bacterial- toxin-induced apoptosis in macrophages requires the lipogenic transcription factor sterol regulatory element binding protein 1a. Mol. Cell. Biol. 32, 2196-2202. https://doi.org/10.1128/MCB.06294-11
- Inoue, J., Sato, R. and Maeda, M. 1998. Multiple DNA elements for sterol regulatory element-binding protein and NF_Y are responsible for sterol-regulated transcription of the genes for human 3_hydroxy_3_methylglutaryl coenzyme A synthase and squalene synthase. J. Biochem. 123, 1191-1198.
- Jeon, T. I. and Osborne, T. F. 2012. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab. 23, 65-72. https://doi.org/10.1016/j.tem.2011.10.004
- Jump, D. B. 2002. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 13, 155-164. https://doi.org/10.1097/00041433-200204000-00007
- Kammoun, H. L. et al. 2009. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201-1215. https://doi.org/10.1172/JCI37007
- Kanayama, T. et al. 2007. Interaction between sterol regulatory element-binding proteins and liver receptor homolog_1 reciprocally suppresses their transcriptional activities. J. Biol. Chem. 282, 10290-10298. https://doi.org/10.1074/jbc.M700270200
- Khamzina, L., Veilleux, A., Bergeron, S. and Marette, A. 2005. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473-1481. https://doi.org/10.1210/en.2004-0921
-
Kim, J. B., Wright, H. M., Wright, M. and Spiegelman, B. M. 1998. ADD1/SREBP1 activates
$PPAR{\gamma}$ through the production of endogenous ligand. Proc. Natl Acad. Sci. USA. 95, 4333-4337. https://doi.org/10.1073/pnas.95.8.4333 - Kuan, Y. C. et al. 2017. Heat shock protein 90 modulates lipid homeostasis by regulating the stability and function of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein. J. Biol. Chem. 292, 3016-3028.
- Latz, E., Xiao, T. S. and Stutz, A. 2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397-411.
- Lee, J. N., Zhang, X., Feramisco, J. D., Gong, Y. and Ye, J. 2008. Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. J. Biol. Chem. 283, 33772-33783. https://doi.org/10.1074/jbc.M806108200
- Lee, S. J. et al. 2003. The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571-1575. https://doi.org/10.1126/science.1088372
- Lee, J. S. et al. 2012. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol. Lett. 211, 29-38. https://doi.org/10.1016/j.toxlet.2012.02.017
- Li, S., Brown, M. S. and Goldstein, J. L. 2010. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA. 107, 3441-3446. https://doi.org/10.1073/pnas.0914798107
- Li, H. et al. 2014. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim. Biophys. Acta 1842, 1844-1854. https://doi.org/10.1016/j.bbadis.2014.07.002
-
Lin, J. et al. 2005. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1
$\beta$ coactivation of SREBP. Cell 120, 261-273. - Liu, T. F. et al. 2012. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 16, 213-225. https://doi.org/10.1016/j.cmet.2012.06.014
- Liu, J. 2014. Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J. Gastroenterol. 20, 14672-14685. https://doi.org/10.3748/wjg.v20.i40.14672
- McRae, S. et al. 2016. The hepatitis C virus-induced NLRP3 inflammasome activates the sterol regulatory element-binding protein (SREBP) and regulates lipid metabolism. J. Biol. Chem. 291, 3254-3267.
- Mohn, K. L. et al. 1991. The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol. Cell. Biol. 11, 381-390. https://doi.org/10.1128/MCB.11.1.381
- Moon, Y. A. et al. 2012. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240-246. https://doi.org/10.1016/j.cmet.2011.12.017
- Morioka, S. et al. 2016. TAK1 regulates hepatic lipid homeostasis through SREBP. Oncogene 35, 3829-3838.
-
Nagoshi, E., Imamoto, N., Sato, R. and Yoneda, Y. 1999. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin
${\beta}$ with HLH-Zip. Mol. Biol. Cell 10, 2221-2233. https://doi.org/10.1091/mbc.10.7.2221 -
Nagoshi, E. and Yoneda, Y. 2001. Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin
$\beta$ . Mol. Cell. Biol. 21, 2779-2789. https://doi.org/10.1128/MCB.21.8.2779-2789.2001 - Okada, T. et al. 2003. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J. Biol. Chem. 278, 31024-31032. https://doi.org/10.1074/jbc.M300923200
- Okazaki, H., Goldstein, J. L., Brown, M. S. and Liang, G. 2010. LXR-SREBP_1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J. Biol. Chem. 285, 6801-6810.
- Osei-Hyiaman, D. et al. 2008. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J. Clin. Invest. 118, 3160-3169 https://doi.org/10.1172/JCI34827
- Payne, V. A. et al. 2010. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. Biochem. J. 425, 215-223. https://doi.org/10.1042/BJ20091112
- Radhakrishnan, A., Ikeda, Y., Kwon, H. J., Brown, M. S. and Goldstein, J. L. 2007. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl Acad. Sci. USA. 104, 6511-6518. https://doi.org/10.1073/pnas.0700899104
- Rawson, R. B., DeBose-Boyd, R., Goldstein, J. L. and Brown, M. S. 1999. Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J. Biol. Chem. 274, 28549-28556. https://doi.org/10.1074/jbc.274.40.28549
- Ren, R. et al. 2015. Protein structure. Crystal structure of a mycobacterial Insig homolog provides insight into how these sensors monitor sterol levels. Science 349, 187-191. https://doi.org/10.1126/science.aab1091
-
Repa, J. J. et al. 2000. Regulation of mouse sterol regulatory element-binding protein
$\backslash$ _1c gene (SREBP-1c) by oxysterol receptors,$LXR{\alpha}$ and$LXR{\beta}$ . Genes Dev. 14, 2819-2830. https://doi.org/10.1101/gad.844900 - Rohrl, C. et al. 2014. Endoplasmic reticulum stress impairs cholesterol efflux and synthesis in hepatic cells. J. Lipid Res. 55, 94-103.
- Schultz, J. R. et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831-2838. https://doi.org/10.1101/gad.850400
- Seo, Y. K. et al. 2009. Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proc. Natl Acad. Sci. USA. 106, 13765-13769. https://doi.org/10.1073/pnas.0904246106
- Shimano, H. et al. 1997. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846-854. https://doi.org/10.1172/JCI119248
- Shimano, H. et al. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832-35839. https://doi.org/10.1074/jbc.274.50.35832
- Shimano, H. et al. 1997. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115-2124. https://doi.org/10.1172/JCI119746
- Shimomura, I. et al. 1999. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl Acad. Sci. USA. 96, 13656-13661. https://doi.org/10.1073/pnas.96.24.13656
- Shimomura, I. et al 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182-3194.
- Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. and Goldstein, J. L. 1999. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73-76.
-
Siersbaek, R., Nielsen, R. and Mandrup, S. 2010.
$PPAR{\gamma}$ in adipocyte differentiation and metabolism - novel insights from genome-wide studies. FEBS Lett. 584, 3242-3249. https://doi.org/10.1016/j.febslet.2010.06.010 - Sundqvist, A. et al. 2005. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF (Fbw7). Cell Metab. 1, 379-391. https://doi.org/10.1016/j.cmet.2005.04.010
-
Tong, X. et al. 2016. E4BP4 is an insulin-induced stabilizer of nuclear SREBP
$\backslash$ _1c and promotes SREBP-1c-mediated lipogenesis. J. Lipid Res. 57, 1219-1230. https://doi.org/10.1194/jlr.M067181 - Tontonoz, P., Kim, J. B., Graves, R. A. and Spiegelman, B. M. 1993. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753-4759.
- Walker, A. K. et al. 2011. A. conserved SREBP-1/ phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840-852. https://doi.org/10.1016/j.cell.2011.09.045
- Wang, G. X. et al. 2014. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436-1443. https://doi.org/10.1038/nm.3713
-
Wang, J. et al. 2015. n-3 polyunsaturated fatty acids protect against pancreatic
${\beta}{\backslash}$ _cell damage due to ER stress and prevent diabetes development. Mol. Nutr. Food Res. 59, 1791-1802. https://doi.org/10.1002/mnfr.201500299 - Wang, X. et al. 1996. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15, 1012-1020. https://doi.org/10.1002/j.1460-2075.1996.tb00438.x
- Worgall, T. S., Sturley, S. L., Seo, T., Osborne, T. F. and Deckelbaum, R. J. 1998. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. J. Biol. Chem. 273, 25537-25540. https://doi.org/10.1074/jbc.273.40.25537
- Xiong, S., Chirala, S. S. and Wakil, S. J. 2000. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp1 binding sites. Proc. Natl Acad. Sci. USA. 97, 3948-3953. https://doi.org/10.1073/pnas.040574197
- Xu, D. et al. 2015. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat. Commun. 6, 8100. https://doi.org/10.1038/ncomms9100
- Yabe, D., Brown, M. S. and Goldstein, J. L. 2002. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl Acad. Sci. USA. 99, 12753-12758.
-
Yahagi, N. et al. 1999. A crucial role of sterol regulatory element-binding protein
$\backslash$ _1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274, 35840-35844. https://doi.org/10.1074/jbc.274.50.35840 - Yahagi, N. et al. 2002. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. J. Biol. Chem. 277, 19353-19357. https://doi.org/10.1074/jbc.M201584200
- Yang, T. et al. 2002. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489-500. https://doi.org/10.1016/S0092-8674(02)00872-3
- Ye, J., Dave, U. P., Grishin, N. V., Goldstein, J. L. and Brown, M. S. 2000. Asparagine-proline sequence within membranespanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc. Natl Acad. Sci. USA. 97, 5123-5128. https://doi.org/10.1073/pnas.97.10.5123
- Yecies, J. L. et al. 2011. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32. https://doi.org/10.1016/j.cmet.2011.06.002
- Yoshikawa, T. et al. 2001. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21, 2991-3000. https://doi.org/10.1128/MCB.21.9.2991-3000.2001
- Zeng, L. et al. 2004. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 23, 950-958. https://doi.org/10.1038/sj.emboj.7600106
- Zhang, Y. et al. 2016. Direct demonstration that loop1 of Scap binds to loop7: a crucial event in cholesterol homeostasis. J. Biol. Chem. 291, 12888-12896. https://doi.org/10.1074/jbc.M116.729798
- Zhang, T. et al. 2015. Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One 10, e0118448.
- Zoncu, R., Efeyan, A. and Sabatini, D. M. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35.