DOI QR코드

DOI QR Code

SREBP as a Global Regulator for Lipid Metabolism

지질대사 조절에서 SREBP의 역할

  • Lee, Wonhwa (Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seo, Young-kyo (Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 이원화 (한국생명공학연구원 노화제어연구단) ;
  • 서영교 (한국생명공학연구원 노화제어연구단)
  • Received : 2018.09.03
  • Accepted : 2018.10.15
  • Published : 2018.10.30

Abstract

Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

SREBPs는 지질의 항상성 및 대사를 조절하는 전사 인자이다. 이들은 내인성 콜레스테롤, 지방산(FA), 트리아실글리세롤(TG) 및 인지질 합성에 필요한 효소의 발현을 정밀하게 조절한다. 3종류의 SREBP 단백질은 2개의 다른 유전자에 의해 암호화 된다. SREBP1 유전자는 SREBP-1a와 SREBP-1c를 만든다. 이는 RNA의 alternative splicing에 의한 대체 프로모터의 이용으로부터 유도된다. SREBP-2는 별도의 유전자에서 유래한다. 또한, SREBPs는 ER 스트레스, 염증, 자가포식 및 세포사멸과 같은 수많은 병인과정에 관여하며, 비만, 이상 지질혈증, 당뇨병 및 비알콜성 지방간 질환 등을 유발하는 것으로 알려져 있다. 유전체의 분석은 SREBPs가 생물학적 신호 전달, 세포 신진 대사, 및 성장을 조절하는 중요한 연결고리임을 보여 주었다. 이 과정에서 SREBP는 PI3K-Akt-mTOR 경로를 통해 활성화 된다고 알려져 있다. 하지만 정확한 분자 메커니즘은 좀더 밝혀져야 한다. 이 리뷰에서는 세포, 기관 및 생물개체 수준의 생리학 및 병태 생리학 영역에서 SREBP의 역할에 대한 포괄적인 이해를 넓혀 줄 것이다.

Keywords

References

  1. Ai, D. et al. 2012. Activation of ER stress and mTORC1 suppresses hepatic sortilin${\backslash}$_1 levels in obese mice. J. Clin. Invest. 122, 1677-1687. https://doi.org/10.1172/JCI61248
  2. Amemiya-Kudo, M. et al. 2000. Promoter analysis of the mouse sterol regulatory element-binding protein$\backslash$_1c gene. J. Biol. Chem. 275, 31078-31085. https://doi.org/10.1074/jbc.M005353200
  3. Aylon, Y. et al. 2016. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes Dev. 30, 786-797. https://doi.org/10.1101/gad.274167.115
  4. Bose, S. K. et al. 2014. Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J. Virol. 88, 4195-4203. https://doi.org/10.1128/JVI.03327-13
  5. Broer, S. and Broer, A. 2017. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 474, 1935-1963.
  6. Brown, M. S. and Goldstein, J. L. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340. https://doi.org/10.1016/S0092-8674(00)80213-5
  7. Brown, M. S. and Goldstein, J. L. 2008. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95-96. https://doi.org/10.1016/j.cmet.2007.12.009
  8. Diamond, R. H. et al. 1993. Novel delayed-early and highly insulin-induced growth response genes. Identification of HRS, a potential regulator of alternative pre-mRNA splicing. J. Biol. Chem. 268, 15185-15192.
  9. Duvel, K. et al. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183. https://doi.org/10.1016/j.molcel.2010.06.022
  10. Engelking, L. J. et al. 2006. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. J. Clin. Invest. 116, 2356-2365.
  11. Fang, S. et al. 2001. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA. 98, 14422-14427.
  12. Fujii, N. et al. 2017. Sterol regulatory element-binding protein$\backslash$_1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction. Aging Cell 16, 508-517. https://doi.org/10.1111/acel.12576
  13. Giandomenico, V., Simonsson, M., Gronroos, E. and Ericsson, J. 2003. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol. 23, 2587-2599. https://doi.org/10.1128/MCB.23.7.2587-2599.2003
  14. Goldstein, J. L., DeBose-Boyd, R. A. and Brown, M. S. 2006. Protein sensors for membrane sterols. Cell 124, 35-46. https://doi.org/10.1016/j.cell.2005.12.022
  15. Gong, X. et al. 2015. Structure of the WD40 domain of SCAP from fission yeast reveals the molecular basis for SREBP recognition. Cell Res. 25, 401-411. https://doi.org/10.1038/cr.2015.32
  16. Guo, F. and Cavener, D. R. 2007. The GCN2 $eIF2{\alpha}$ kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab. 5, 103-114. https://doi.org/10.1016/j.cmet.2007.01.001
  17. Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L. and Brown, M. S. 2001. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol. Chem. 276, 4365-4372. https://doi.org/10.1074/jbc.M007273200
  18. Hirano, Y., Yoshida, M., Shimizu, M. and Sato, R. 2001. Direct demonstration of rapid degradation of nuclear sterol regulatory element-binding proteins by the ubiquitin-proteasome pathway. J. Biol. Chem. 276, 36431-36437. https://doi.org/10.1074/jbc.M105200200
  19. Horton, J. D., Goldstein, J. L. and Brown, M. S. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131. https://doi.org/10.1172/JCI0215593
  20. Horton, J. D., Bashmakov, Y., Shimomura, I. and Shimano, H. 1998. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl Acad. Sci. USA. 95, 5987-5992. https://doi.org/10.1073/pnas.95.11.5987
  21. Hotamisligil, G. S. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900-917. https://doi.org/10.1016/j.cell.2010.02.034
  22. Howell, J. J., Ricoult, S. J., Ben-Sahra, I. and Manning, B. D. 2013. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans. 41, 906-912. https://doi.org/10.1042/BST20130041
  23. Hughes, A. L., Todd, B. L. and Espenshade, P. J. 2005. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120, 831-842. https://doi.org/10.1016/j.cell.2005.01.012
  24. Im, S. S. et al. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13, 540-549. https://doi.org/10.1016/j.cmet.2011.04.001
  25. Im, S. S. and Osborne, T. F. 2012. Protection from bacterial- toxin-induced apoptosis in macrophages requires the lipogenic transcription factor sterol regulatory element binding protein 1a. Mol. Cell. Biol. 32, 2196-2202. https://doi.org/10.1128/MCB.06294-11
  26. Inoue, J., Sato, R. and Maeda, M. 1998. Multiple DNA elements for sterol regulatory element-binding protein and NF_Y are responsible for sterol-regulated transcription of the genes for human 3_hydroxy_3_methylglutaryl coenzyme A synthase and squalene synthase. J. Biochem. 123, 1191-1198.
  27. Jeon, T. I. and Osborne, T. F. 2012. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab. 23, 65-72. https://doi.org/10.1016/j.tem.2011.10.004
  28. Jump, D. B. 2002. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 13, 155-164. https://doi.org/10.1097/00041433-200204000-00007
  29. Kammoun, H. L. et al. 2009. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201-1215. https://doi.org/10.1172/JCI37007
  30. Kanayama, T. et al. 2007. Interaction between sterol regulatory element-binding proteins and liver receptor homolog_1 reciprocally suppresses their transcriptional activities. J. Biol. Chem. 282, 10290-10298. https://doi.org/10.1074/jbc.M700270200
  31. Khamzina, L., Veilleux, A., Bergeron, S. and Marette, A. 2005. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473-1481. https://doi.org/10.1210/en.2004-0921
  32. Kim, J. B., Wright, H. M., Wright, M. and Spiegelman, B. M. 1998. ADD1/SREBP1 activates $PPAR{\gamma}$ through the production of endogenous ligand. Proc. Natl Acad. Sci. USA. 95, 4333-4337. https://doi.org/10.1073/pnas.95.8.4333
  33. Kuan, Y. C. et al. 2017. Heat shock protein 90 modulates lipid homeostasis by regulating the stability and function of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein. J. Biol. Chem. 292, 3016-3028.
  34. Latz, E., Xiao, T. S. and Stutz, A. 2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397-411.
  35. Lee, J. N., Zhang, X., Feramisco, J. D., Gong, Y. and Ye, J. 2008. Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. J. Biol. Chem. 283, 33772-33783. https://doi.org/10.1074/jbc.M806108200
  36. Lee, S. J. et al. 2003. The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571-1575. https://doi.org/10.1126/science.1088372
  37. Lee, J. S. et al. 2012. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol. Lett. 211, 29-38. https://doi.org/10.1016/j.toxlet.2012.02.017
  38. Li, S., Brown, M. S. and Goldstein, J. L. 2010. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA. 107, 3441-3446. https://doi.org/10.1073/pnas.0914798107
  39. Li, H. et al. 2014. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim. Biophys. Acta 1842, 1844-1854. https://doi.org/10.1016/j.bbadis.2014.07.002
  40. Lin, J. et al. 2005. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1$\beta$ coactivation of SREBP. Cell 120, 261-273.
  41. Liu, T. F. et al. 2012. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab. 16, 213-225. https://doi.org/10.1016/j.cmet.2012.06.014
  42. Liu, J. 2014. Ethanol and liver: recent insights into the mechanisms of ethanol-induced fatty liver. World J. Gastroenterol. 20, 14672-14685. https://doi.org/10.3748/wjg.v20.i40.14672
  43. McRae, S. et al. 2016. The hepatitis C virus-induced NLRP3 inflammasome activates the sterol regulatory element-binding protein (SREBP) and regulates lipid metabolism. J. Biol. Chem. 291, 3254-3267.
  44. Mohn, K. L. et al. 1991. The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol. Cell. Biol. 11, 381-390. https://doi.org/10.1128/MCB.11.1.381
  45. Moon, Y. A. et al. 2012. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240-246. https://doi.org/10.1016/j.cmet.2011.12.017
  46. Morioka, S. et al. 2016. TAK1 regulates hepatic lipid homeostasis through SREBP. Oncogene 35, 3829-3838.
  47. Nagoshi, E., Imamoto, N., Sato, R. and Yoneda, Y. 1999. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin ${\beta}$ with HLH-Zip. Mol. Biol. Cell 10, 2221-2233. https://doi.org/10.1091/mbc.10.7.2221
  48. Nagoshi, E. and Yoneda, Y. 2001. Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin $\beta$. Mol. Cell. Biol. 21, 2779-2789. https://doi.org/10.1128/MCB.21.8.2779-2789.2001
  49. Okada, T. et al. 2003. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J. Biol. Chem. 278, 31024-31032. https://doi.org/10.1074/jbc.M300923200
  50. Okazaki, H., Goldstein, J. L., Brown, M. S. and Liang, G. 2010. LXR-SREBP_1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J. Biol. Chem. 285, 6801-6810.
  51. Osei-Hyiaman, D. et al. 2008. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J. Clin. Invest. 118, 3160-3169 https://doi.org/10.1172/JCI34827
  52. Payne, V. A. et al. 2010. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. Biochem. J. 425, 215-223. https://doi.org/10.1042/BJ20091112
  53. Radhakrishnan, A., Ikeda, Y., Kwon, H. J., Brown, M. S. and Goldstein, J. L. 2007. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl Acad. Sci. USA. 104, 6511-6518. https://doi.org/10.1073/pnas.0700899104
  54. Rawson, R. B., DeBose-Boyd, R., Goldstein, J. L. and Brown, M. S. 1999. Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J. Biol. Chem. 274, 28549-28556. https://doi.org/10.1074/jbc.274.40.28549
  55. Ren, R. et al. 2015. Protein structure. Crystal structure of a mycobacterial Insig homolog provides insight into how these sensors monitor sterol levels. Science 349, 187-191. https://doi.org/10.1126/science.aab1091
  56. Repa, J. J. et al. 2000. Regulation of mouse sterol regulatory element-binding protein$\backslash$_1c gene (SREBP-1c) by oxysterol receptors, $LXR{\alpha}$ and $LXR{\beta}$. Genes Dev. 14, 2819-2830. https://doi.org/10.1101/gad.844900
  57. Rohrl, C. et al. 2014. Endoplasmic reticulum stress impairs cholesterol efflux and synthesis in hepatic cells. J. Lipid Res. 55, 94-103.
  58. Schultz, J. R. et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831-2838. https://doi.org/10.1101/gad.850400
  59. Seo, Y. K. et al. 2009. Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proc. Natl Acad. Sci. USA. 106, 13765-13769. https://doi.org/10.1073/pnas.0904246106
  60. Shimano, H. et al. 1997. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest. 99, 846-854. https://doi.org/10.1172/JCI119248
  61. Shimano, H. et al. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832-35839. https://doi.org/10.1074/jbc.274.50.35832
  62. Shimano, H. et al. 1997. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115-2124. https://doi.org/10.1172/JCI119746
  63. Shimomura, I. et al. 1999. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl Acad. Sci. USA. 96, 13656-13661. https://doi.org/10.1073/pnas.96.24.13656
  64. Shimomura, I. et al 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182-3194.
  65. Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. and Goldstein, J. L. 1999. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73-76.
  66. Siersbaek, R., Nielsen, R. and Mandrup, S. 2010. $PPAR{\gamma}$ in adipocyte differentiation and metabolism - novel insights from genome-wide studies. FEBS Lett. 584, 3242-3249. https://doi.org/10.1016/j.febslet.2010.06.010
  67. Sundqvist, A. et al. 2005. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF (Fbw7). Cell Metab. 1, 379-391. https://doi.org/10.1016/j.cmet.2005.04.010
  68. Tong, X. et al. 2016. E4BP4 is an insulin-induced stabilizer of nuclear SREBP$\backslash$_1c and promotes SREBP-1c-mediated lipogenesis. J. Lipid Res. 57, 1219-1230. https://doi.org/10.1194/jlr.M067181
  69. Tontonoz, P., Kim, J. B., Graves, R. A. and Spiegelman, B. M. 1993. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753-4759.
  70. Walker, A. K. et al. 2011. A. conserved SREBP-1/ phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840-852. https://doi.org/10.1016/j.cell.2011.09.045
  71. Wang, G. X. et al. 2014. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436-1443. https://doi.org/10.1038/nm.3713
  72. Wang, J. et al. 2015. n-3 polyunsaturated fatty acids protect against pancreatic ${\beta}{\backslash}$_cell damage due to ER stress and prevent diabetes development. Mol. Nutr. Food Res. 59, 1791-1802. https://doi.org/10.1002/mnfr.201500299
  73. Wang, X. et al. 1996. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15, 1012-1020. https://doi.org/10.1002/j.1460-2075.1996.tb00438.x
  74. Worgall, T. S., Sturley, S. L., Seo, T., Osborne, T. F. and Deckelbaum, R. J. 1998. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. J. Biol. Chem. 273, 25537-25540. https://doi.org/10.1074/jbc.273.40.25537
  75. Xiong, S., Chirala, S. S. and Wakil, S. J. 2000. Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp1 binding sites. Proc. Natl Acad. Sci. USA. 97, 3948-3953. https://doi.org/10.1073/pnas.040574197
  76. Xu, D. et al. 2015. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat. Commun. 6, 8100. https://doi.org/10.1038/ncomms9100
  77. Yabe, D., Brown, M. S. and Goldstein, J. L. 2002. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc. Natl Acad. Sci. USA. 99, 12753-12758.
  78. Yahagi, N. et al. 1999. A crucial role of sterol regulatory element-binding protein$\backslash$_1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274, 35840-35844. https://doi.org/10.1074/jbc.274.50.35840
  79. Yahagi, N. et al. 2002. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. J. Biol. Chem. 277, 19353-19357. https://doi.org/10.1074/jbc.M201584200
  80. Yang, T. et al. 2002. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489-500. https://doi.org/10.1016/S0092-8674(02)00872-3
  81. Ye, J., Dave, U. P., Grishin, N. V., Goldstein, J. L. and Brown, M. S. 2000. Asparagine-proline sequence within membranespanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc. Natl Acad. Sci. USA. 97, 5123-5128. https://doi.org/10.1073/pnas.97.10.5123
  82. Yecies, J. L. et al. 2011. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32. https://doi.org/10.1016/j.cmet.2011.06.002
  83. Yoshikawa, T. et al. 2001. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21, 2991-3000. https://doi.org/10.1128/MCB.21.9.2991-3000.2001
  84. Zeng, L. et al. 2004. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 23, 950-958. https://doi.org/10.1038/sj.emboj.7600106
  85. Zhang, Y. et al. 2016. Direct demonstration that loop1 of Scap binds to loop7: a crucial event in cholesterol homeostasis. J. Biol. Chem. 291, 12888-12896. https://doi.org/10.1074/jbc.M116.729798
  86. Zhang, T. et al. 2015. Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One 10, e0118448.
  87. Zoncu, R., Efeyan, A. and Sabatini, D. M. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35.