DOI QR코드

DOI QR Code

녹차의 폴리페놀류인 에피갈로카테킨-3-갈레이트에 의한 항노화, 항비만 및 항암효과에 대한 비교 분석

Comparative Analysis on Anti-aging, Anti-adipogenesis, and Anti-tumor Effects of Green Tea Polyphenol Epigallocatechin-3-gallate

  • 임은지 (경상대학교 사범대학 생물교육과) ;
  • 김민재 (경상대학교 사범대학 생물교육과) ;
  • 김현지 (경상대학교 사범대학 생물교육과) ;
  • 이성호 (경상대학교 생명과학부) ;
  • 전병균 (경상대학교 사범대학 생물교육과)
  • Lim, Eun-Ji (Department of Biology Education, College of Education, Gyeongsang National University) ;
  • Kim, Min-Jae (Department of Biology Education, College of Education, Gyeongsang National University) ;
  • Kim, Hyeon-Ji (Department of Biology Education, College of Education, Gyeongsang National University) ;
  • Lee, Sung-Ho (Division of Life Science, Gyeongsang National University) ;
  • Jeon, Byeong-Gyun (Department of Biology Education, College of Education, Gyeongsang National University)
  • 투고 : 2018.06.08
  • 심사 : 2018.08.20
  • 발행 : 2018.10.30

초록

본 연구에서는 다양한 사람의 암세포주(SNU-601, MKN74, AGS, MCF-7, U87-MG 및 A-549)와 정상세포주 [MRC-5 섬유아세포, 사랑니 유래 중간엽 줄기세포(DSC), 3T3-L1 생쥐의 지방전구세포]에 녹차에 포함되어 있는 epigallocatechin-3-gallate (EGCG)를 처리하여 세포 증식, 세포 노화, 지방세포로의 분화, 말단소립복원효소 활성과 암세포의 전이 능력 등을 검증하여 항노화, 항비만 및 항암 효과를 서로 비교 조사하였다. MTT 분석에서 다양한 암세포주는 정상세포주보다 유의적으로 낮은 반억제농도값을 나타내었다. 10 uM의 EGCG가 포함된 배양액에서 정상체세포인 MRC-5와 DSC를 5 계대배양한 결과 세포증식 및 세포 노화에 큰 변화를 관찰하지 못하였고, 3T3-L1 생쥐의 지방전구세포를 지방분화 배양액에 EGCG를 첨가하여 지방세포로의 분화 억제를 유도하였지만 지방세포로의 분화를 역시 억제하지 못하였다. 그러나 여러 다양한 암세포주에 10 uM의 EGCG가 포함된 배양액에 배양한 결과 암세포의 세포증식 억제, 세포노화 유도, 말단소립복원효소 활성과 암세포의 전이 능력이 현저히 감소됨을 관찰하여 EGCG는 항노화나 항비만 효과보다는 항암효과에 더 효율적인 것으로 관찰되었고, 적당한 농도에서 잠재적인 항암물질로의 한 종류로 판단된다.

The study compared the anti-aging, anti-adipogenesis, and anti-tumor effects of epigallocatechin-3- gallate (EGCG) in various cancer cell lines (SNU-601, MKN74, AGS, MCF-7, U87-MG, and A-549) and normal cell lines (MRC-5 fibroblasts, dental tissue-derived mesenchymal stem cells [DSC], and 3T3-L1 pro-adipocytes). Half inhibitory concentration ($IC_{50}$) values were significantly (p<0.05) higher in normal cell lines (~50 uM), when compared to that in cancer cell lines (~10 uM). For anti-aging effects, MRC-5 and DSC were exposed to 10 uM EGCG for up to five passages that did not display any growth arrest. Population doubling time and senescence-related ${\beta}-galactosidase$ ($SA-{\beta}-gal$) activity in treated cells were similar to untreated cells. For anti-adipogenic effects, mouse 3T3-L1 pre-adipocytes were induced to adipocytes in an adipogenic differentiation medium containing 10 uM EGCG, but adipogenesis in 3T3-L1 cells was not inhibited by EGCG treatment. For anti-tumor effects, the cancer cell lines were treated with 10 uM EGCG. PDT was significantly (p<0.05) increased in EGCG-treated SNU-601, AGS, MCF-7, and U87-MG cancer cell lines, except in MKN74 and A-549. The level of telomerase activity and cell migration capacity were significantly (p<0.05) reduced, while $SA-{\beta}-gal$ activity was highly up-regulated in EGCG treated-cancer cell lines, when compared to that in untreated cancer cell lines. Our results have demonstrated that EGCG treatment induces anti-tumor effects more efficiently as noted by decreased cell proliferation, cell migration, telomerase activity, and increased $SA-{\beta}-gal$ activity than inducing anti-aging and anti-adipogenesis. Therefore, EGCG at a specific concentration can be considered for a potential anti-tumor drug.

키워드

참고문헌

  1. Ahmed, B., Liu, S. and Si, H. 2017. Antiadipogenic effects and mechanisms of combinations of genistein, epigallocatechin-3-gallate, and/or resveratrol in preadipocytes. J. Med. Food. 20, 162-170.
  2. Ahmed, N. A., Radwan, N. M., Aboul Ezz, H. S. and Salama, N. A. 2017. The antioxidant effect of green tea mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagn. Biol. Med. 36, 63-73.
  3. Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., Greider, C. W. and Harley, C. B. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA. 89, 10114-10118. https://doi.org/10.1073/pnas.89.21.10114
  4. Artandi, S. E. and DePinho, R. A. 2010. Telomeres and telomerase in cancer. Carcinogenesis 31, 9-18.
  5. Du, G. J, Zhang, Z., Wen, X. D., Yu, C., Calway, T., Yuan, C. S. and Wang, C. Z. 2012. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4, 1679-1691. https://doi.org/10.3390/nu4111679
  6. Elbling, L., Herbacek, I., Weiss, R. M., Jantschitsch, C., Micksche, M., Gerner, C., Pangratz, H., Grusch, M., Knasmüller, S. and Berger, W. 2010. Hydrogen peroxide mediates EGCG-induced antioxidant protection in human keratinocytes. Free Radic. Biol. Med. 49, 1444-1452. https://doi.org/10.1016/j.freeradbiomed.2010.08.008
  7. Fidler, I. J. 2003. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453-458. https://doi.org/10.1038/nrc1098
  8. Han, D. W., Lee, M. H., Kim, B., Lee, J. J., Hyon, S. H. and Park, J. C. 2012. Preventive effects of epigallocatechin-3-O-gallate against replicative senescence associated with p53 acetylation in human dermal fibroblasts. Oxid. Med. Cell. Longev. 2012, 850684.
  9. He, Y., Tan, D., Mi, Y., Zhou, Q. and Ji, S. 2017. Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food Funct. 8, 2275-2282. https://doi.org/10.1039/C6FO01823H
  10. Holst, B. and Williamson, G. 2008. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr. Opin. Biotechnol. 19, 73-82. https://doi.org/10.1016/j.copbio.2008.03.003
  11. Jacob, S. A., Khan, T. M. and Lee, L. H. 2017. The effect of Green Tea consumption on prostate cancer risk and progression: a systematic review. Nutr. Cancer 69, 353-364. https://doi.org/10.1080/01635581.2017.1285037
  12. Jeon, B. G., Kumar, B. M., Kang, E. J., Maeng, G. H., Lee, Y. M., Hah, Y. S., Ock, S. A., Kwack, D. O., Park, B. W. and Rho, G. J. 2011a. Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression. Anticancer Res. 31, 4315-4328.
  13. Jeon, B. G., Kwack, D. O. and Rho, G. J. 2011b. Variation of telomerase activity and morphology in porcine mesenchymal stem cells and fibroblasts during prolonged in vitro culture. Anim. Biotechnol. 22, 197-210. https://doi.org/10.1080/10495398.2011.624651
  14. Jeon, B. G., Kumar, B. M., Kang, E. J., Ock, S. A., Lee, S. L., Kwack, D. O., Byun, J. H., Park, B. W. and Rho, G. J. 2011c. Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell Tissue Res. 345,149-161.
  15. Jeon, B. G., Jang, S. J., Park, J. S., Subbarao, R. B., Jeong, G. J., Park, B. W. and Rho, G. J. 2015. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Animal Cells Syst. 19, 321-331. https://doi.org/10.1080/19768354.2015.1087430
  16. Moon, J. Y., Kim, S. W., Yun, G. M., Lee, H. S., Kim, Y. D., Jeong, G. J., Ullah, I., Rho, G. J. and Jeon, B. G. 2015. Inhibition of cell growth and downregulation of telomerase activity by amygdalin in human cancer cell lines. Animal Cells Syst. 19, 295-304. https://doi.org/10.1080/19768354.2015.1060261
  17. Kim, Y. D., Jang, S. J., Lim, E. J., Ha, J. S., Shivakumar, S. B., Jeong, G. J., Rho, G. J. and Jeon, B. G. 2017. Induction of telomere shortening and cellular apoptosis by sodium meta-arsenite in human cancer cell lines. Animal Cells Syst. 21, 241-254.
  18. Kumar, B. M., Maeng, G. H., Lee, Y. M., Kim, T. H., Lee, J. H., Jeon, B. G., Ock, S. A., Yoo, J. G. and Rho, G. J. 2012. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow. Res. Vet. Sci. 93, 749-757.
  19. Lao, W., Tan, Y., Jin, X., Xiao, L., Kim, J. J. and Qu, X. 2015. Comparison of cytotoxicity and the Anti-Adipogenic Effect of Green Tea Polyphenols with Epigallocatechin-3-Gallate in 3T3-L1 Preadipocytes. Am. J. Chin. Med. 43, 1177-1190 https://doi.org/10.1142/S0192415X15500676
  20. Li, P., Li, S., Yin, D., Li, J., Wang, L., Huang, C. and Yang, X. 2017. EGCG sensitizes human nasopharyngeal carcinoma cells to TRAIL-mediated apoptosis by activation NF-${\kappa}$B. Neoplasma 64, 74-80. https://doi.org/10.4149/neo_2017_109
  21. Li, S., Wang, Y., Feng, C., Wu, G., Ye, Y. and Tian, J. 2017. Calycosin inhibits the migration and invasion of human breast cancer cells by down-regulation of foxp3 expression. Cell Physiol. Biochem. 44, 1775-1784.
  22. Lin, S. C., Li, W. C., Shih, J. W., Hong, K. F., Pan, Y. R. and Lin, J. J. 2006. The tea polyphenols EGCG and EGC repress mRNA expression of human telomerase reverse transcriptase (hTERT) in carcinoma cells. Cancer Lett. 236, 80-86.
  23. Liu, S., Sun, Z., Chu, P., Li, H., Ahsan, A., Zhou, Z., Zhang, Z., Sun, B., Wu, J., Xi, Y., Han, G., Lin, Y., Peng, J. and Tang, Z. 2017. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways. Apoptosis 22, 672-680. https://doi.org/10.1007/s10495-017-1360-8
  24. Mittal, A., Pate, M. S., Wylie, R. C., Tollefsbol, T. O. and Katiyar, S. K. 2004. EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. Int. J. Oncol. 24, 703-710.
  25. Moon, J. Y., Kim, S. W., Yun, G. M., Lee, H. S., Kim, Y. D., Jeong, J. G., Ullah, I., Rho, G. J. and Jeon, B. G. 2015. Inhibition of cell growth and down-regulation of telomerase activity by amygdalin in human cancer cell lines. Animal Cells Syst. 19, 295-304. https://doi.org/10.1080/19768354.2015.1060261
  26. Prior, R. L. and Cao, G. 1999. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc. Soc. Exp. Biol. Med. 220, 255-261.
  27. Rao, M. V. and Narechania, M. B. 2016. The genotoxic effects of anti-cancer drug gossypol on human lymphocytes and its mitigation by melatonin. Drug Chem. Toxicol. 39. 357-61. https://doi.org/10.3109/01480545.2015.1039646
  28. Vergote, D., Cren-Olive, C., Chopin, V., Toillon, R. A., Rolando, C., Hondermarck, H. and Le Bourhis, X. 2002. (-)-Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts. Breast Cancer Res. Treat. 76, 195-201. https://doi.org/10.1023/A:1020833410523
  29. Voulgari, A. and Pintzas, A. 2009. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta. 1796, 75-90.
  30. Wang, J., Man, G. C. W., Chan, T. H., Kwong, J. and Wang, C. C. 2018. A prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Lett. 412, 10-20. https://doi.org/10.1016/j.canlet.2017.09.054
  31. Wang, P., Wang, B., Chung, S., Wu, Y., Henning, S. M. and Vadgama, J. V. 2014. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells. RSC Adv. 4, 35242-35250. https://doi.org/10.1039/C4RA06616B
  32. Wang, Z. M., Zhong, C. Y. and Zhao, G. J. 2017. Polyphenol epigallocatechin-3-gallate alleviates high glucose-induced H9C2 cell damage through PI3K/Akt pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 4236-4242.
  33. Weng, L. X., Wang, G. H., Yao, H., Yu, M. F. and Lin, J. 2017. Epigallocatechin gallate inhibits the growth of salivary adenoid cystic carcinoma cells via the EGFR/Erk signal transduction pathway and the mitochondria apoptosis pathway. Neoplasma 64, 563-570. https://doi.org/10.4149/neo_2017_410
  34. Wolfram, S., Wangm, Y. and Thielecke, F. 2006. Anti-obesity effects of green tea: from bedside to bench. Mol. Nutr. Food Res. 50, 176-187.