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DENSITY SMOOTHNESS PARAMETER ESTIMATION WITH

SOME ADDITIVE NOISES

Junjian Zhao and Zhitao Zhuang

Abstract. In practice, the density function of a random variable X is

always unknown. Even its smoothness parameter is unknown to us. In
this paper, we will consider a density smoothness parameter estimation

problem via wavelet theory. The smoothness parameter is defined in
the sense of equivalent Besov norms. It is well-known that it is almost

impossible to estimate this kind of parameter in general case. But it

becomes possible when we add some conditions (to our proof, we can
not remove them) to the density function. Besides, the density function

contains impurities. It is covered by some additive noises, which is the

key point we want to show in this paper.

1. Introduction

The smoothness parameter estimation of a density function is essential in
studying the rate of convergence of that function’s estimators. Generally speak-
ing, density function is assumed differentiable ([15]) or in Sobolev or Besov
spaces ([1,4]) with smoothness parameters s. When s is unknown, the adpative
methods presented in [2,3,9] make it possible to obtain the optimal rate of con-
vergence (or sub-optimal) of a density estimator. There are also non-adaptive
methods ([6]) of estimation which require the exact value of the parameters s
over certain spaces. In practice, a fundamental problem is needed for verifying
the smoothness assumption and studying the smoothness tests (e.g., [10, 11]).
Besides, the paper [8] gives a new light on smoothness parameter estimation
and confirms the need of this estimation.

It is well-known that it is almost impossible to give effective estimation of
smoothness parameter in general case ([2,13]) over such like Besov spaces. But
it does not mean that it is impossible in any case. The paper [6] shows that one
can effectively estimate the smoothness parameter of some classes of density
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functions, such as piecewise-smooth functions. Using characterization of Besov
space Bsp,∞ (defined below) in terms of wavelet coefficients, [6] constructed a
“pseudo-consistent” estimator of the smoothness parameter, which is strongly
consistent in the case of density function is a piecewise-smooth function.

Note that the model in [6] does not contain any noise, but not the case in
reality. The density estimation for a statistical model with additive noise plays
important roles in both statistics and econometrics. For example, Gaussian
noise is most widely studied because of importance in both theory and appli-
cations ([9]). However, non-Gaussian noises appear in many areas ([14,16]). In
this paper, we will study moderately ill-posed noise, whose density function ϕ
satisfies some conditions in Section 2. With this noise, we derive a estimation of
smoothness parameter. Furthermore, a non-linear wavelet estimator (defined
by thresholding method) gives a better estimation [5,7] than the classical meth-
ods, due to time and frequency localization of wavelet bases. So we will also
study this kind of smoothness parameter estimation under non-linear wavelet
estimators’ sense.

In this section, we will list a series of notations for Besov spaces. Some
lemmas or preliminary results for smoothness parameter estimation will be
given in Section 2. Based on this preparation, we present our main results in
the last section.

Let N, Z and R be the set of positive integers, the set of integers and the
set of real numbers, respectively. Let Rd be the classical d-dimensional real
number space. Through out this paper, we use A . B to abbreviate that A is
bounded by a constant multiple of B, A & B is defined as B . A and A ∼ B
means A . B and B . A. For a Lebesgue measurable function f , the support
of f means the set Supp(f) := {x ∈ R : f(x) 6= 0} , which is well-defined up to
a set of measure 0.

Define fj,k(·) := 2
j
2 f(2j ·−k) through out this paper except for special expla-

nation. The classical Fourier transform is given by f̂(ξ) :=
∫
Rd f(x)e−ixξdx for

f ∈ L1(Rd) and a standard extension in other cases. A Muliresolution analysis
(MRA) is defined below, which is a sequence of approximated spaces allowing
the construction of wavelets.

Definition 1.1. (MRA) A multiresolution analysis of L2(R) is a sequence of
closed subspaces {Vj}j∈Z verifying:

(i) ∀j, Vj ⊆ Vj+1;
⋂
j Vj = {0} and

⋃
j Vj = L2(R);

(ii) f ∈ Vj ⇔ f(2·) ∈ Vj+1;
(iii) There exists a function φ ∈ V0 such that the family {φ(x− k)}k∈Z form

a (Riesz) basis of V0.

We can derive a wavelet function via ψ(x) :=
∑
k(−1)kh1−kφ1,k(x) with

hk =
∫
φφ1,kdx. It is clear that both {φ0,k, ψj,k}j≥0,k∈Z and {ψj,k}j,k∈Z are

orthonormal bases of L2(R). This theory will be used in characterization of
Besov spaces.
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Let 0 < p, q ≤ ∞, s > 0 and s = n + δ with n ∈ N, δ ∈ (0, 1]. Wn
p (Rd)

is the classical Lp-Sobolev spaces with ‖f‖Wn
p (Rd) := ‖f (n)‖Lp(Rd) + ‖f‖Lp(Rd).

Besov spaces are defined by

Bsp,q(Rd) := {f ∈Wn
p (Rd) : ‖t−δω2

p(f (n), t)‖∗q <∞}.

Here, ω2
p(f, t) = sup

|h|≤t
‖f(·+ 2h)− 2f(·+h) + f(·)‖Lp(Rd) denotes the 2-th order

smoothness modulus of f , and

‖f‖∗q :=

{
(
∫∞
0
|f(t)|q dtt )

1
q , 1 ≤ q <∞;

ess supt|f(t)|, q =∞.

The Besov (quasi-)norm is given by ‖f‖Bsp,q(Rd) := ‖f‖Wn
p (Rd) + |f |Bsp,q(Rd).

When d = 1, Besov space is denoted by Bsp,q(R). A function φ is called

r-regular, if φ ∈ Cr(R) and φ(m)(x) ≤ C(1 + |x|2)−l for each l ∈ Z and
m = 0, 1, . . . , r. Based on r-regular condition, characterization of Besov spaces
is given below in terms of wavelet coefficients. It should be pointed out that
this result is the foundation of our estimation. Meanwhile, we use ‖λ‖lp to

denote lp(Z) norm for λ := {λk}k∈Z ∈ lp(Z), where ‖λ‖lp = (
∑
k |λk|p)

1
p for

p <∞ and ‖λ‖l∞ = supk |λk|.

Lemma 1.1 ([9]). Let φ be r-regular with 0 < s < r and ψ be the corresponding
wavelets. If f ∈ Lp(R), then the followings are equivalent.

(i) f ∈ Bsp,q(R), 1 ≤ p, q ≤ ∞;

(ii) ‖(α0,k)k∈Z‖lp + ‖(2j(s+
1
2−

1
p )‖(βj,k)k∈Z‖lp)j≥0‖lq < ∞, where α0,k =∫

f(x)φ0,k(x)dx, βj,k =
∫
f(x)ψj,k(x)dx.

Moreover,

‖f‖Bsp,q(R) ∼ ‖(α0,k)k∈Z‖lp + ‖(2j(s+
1
2−

1
p )‖(βj,k)k∈Z‖lp)j≥0‖lq .

Note that the constants of upper and lower bounds for equivalent norm are all
only dependent on r, s, p, q.

Throughout this paper we shall denote by C and Cj (j = 1, 2, . . .) for various
positive constants whose exact value may change from lines to lines but are not
essential to the analysis of problem.

2. Estimation of smoothness parameter

Let us define a smoothness parameter of a function f ∈ Lp(R) for some
1 ≤ p <∞ or f ∈ Cb(R) in case p =∞ as (Cb(R) is the space of all continues
and bounded functions)

s∗p := sup{s : f ∈ Bsp,∞(R)}.

We take sup ∅ = 0 and supR =∞. By Lemma 1.1, a function f ∈ Lp(R) with
the expansion f =

∑
k α0,kφ0,k +

∑∞
j=0

∑
k βj,kψj,k belongs to Bsp,∞(R) if and
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only if

sup
j≥0

(2j(s−
1
p+

1
2 )‖(βj,k)k‖lp) <∞ and ‖(α0,k)k‖lp <∞.

With the help of the above results, [6] gives an important result below.

Lemma 2.1 ([6]). Let φ, ψ come from a r-regular MRA, r ≥ 1, 1 ≤ p ≤ ∞.
If 0 < s∗p < r, then the set of indices

J := {j ≥ 1 : ‖(βj,k)k‖lp 6= 0}

has infinitely many elements and

lim infj→∞,j∈J
− log2 ‖(βj,k)k‖lp

j
= s∗p −

1

p
+

1

2
.

As usual, let Pj and Qj be the orthogonal projections from L2(R) to Vj and
Wj , respectively. Here Wj := Vj+1 	 Vj .

Pjf :=
∑
k

αj,kφj,k and Qjf := Pj+1f − Pjf =
∑
k

βj,kψj,k,

with αj,k :=
∫
fφj,kdx and βj,k :=

∫
fψj,kdx. We can extend these definitions

of projections to Lp(R) sense [17], i.e.,

Pjf :=
∑
k

αj,kφj,k and Qjf :=
∑
k

βj,kψj,k

for f ∈ Lp(R). And a lemma is followed by this definition.

Lemma 2.2 ([9]). Let h be a scaling or wavelet function with

θ(h) := sup
x∈R

∑
k

|h(x− k)| <∞.

Then there exist 0 < C1 ≤ C2 <∞ such that

C12j(
1
2−

1
p )‖λ‖lp ≤ ‖

∑
k

λkhj,k‖Lp ≤ C22j(
1
2−

1
p )‖λ‖lp

for 1 ≤ p ≤ ∞, λ := {λk}k∈Z ∈ lp(Z).

So Pj and Qj are well-defined for f ∈ Lp(R). The Daubechies and Meyer’s
scaling and wavelet functions satisfy θ(h) < ∞. Then, we have a corollary by
replacing

∑
k λkhj,k with Qjf .

Corollary 2.1. Let ψ be a r-regular wavelet function, 1 ≤ p ≤ ∞ and 0 <
s∗p < r. Then

lim infj→∞,j∈J
− log2 ‖Qjf‖Lp

j
= s∗p.

We say this is “pseudo-consistent” because of “lim infj→∞,j∈J” but not
“limj→∞”, and “limj→∞” is called strongly consistent. Through out this pa-
per, define log2 0 = −∞. What we want to show is that whether we have
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similar results when βj,· (or Qjf) is changed into an estimator β̂j,· (or Q̂jf)
with additive noise, and their definitions are in Theorem 3.1 and Remark 3.1.

We will study a moderately ill-posed noise ε, whose density function ϕ sat-
isfies that for some ν ≥ 0 (see [12] for more details, here we only need the third
condition):

(C) ϕ̂(t) ≥ C(1 + |t|2)−
ν
2 .

When ϕ degenerates to the Dirac functional, its Fourier transform ϕ̂ ≡ 1
and (C) hold automatically (ν = 0). Then the study goes back to the classical
one in [6].

Let Y1, Y2, . . . , Yn be independent and identically distributed (i.i.d) random
variables of

Y = X + ε,

where X stands for real-valued random variable with unknown probability den-
sity f : R → R+ (R+ is the nonnegative real number set) and ε denotes an
independent random noise with the probability density ϕ. The problem is to
estimate the smoothness parameter of f via Y1, Y2, . . . , Yn in some cases. If
the density of Y is g, as a deconvolution problem, density g equals to the
convolution of f and ϕ. That is g = f ∗ ϕ :=

∫
f(· − x)ϕ(x)dx.

As in [12], we introduce

Kjh(y) :=
1

2π

∫
R
eity

ĥ(t)

ϕ̂(−2jt)
dt, γ̂j,k :=

1

n

n∑
i=1

(Kjh)j,k(Yi).

Replacing f ∈ Bs′p,q(R) by ‖f‖L∞(R) < ∞ in Lemma 2.3 of [12], and then put
it into Remark 2.2 in [12], we will have:

Lemma 2.3. Let ϕ satisfy (C), h be r + 2-regular scaling or wavelet function
and h, f have compact supports with ‖f‖L∞ < ∞, 1 ≤ p < ∞. Define γ̂j,· :=
(γ̂j,k)k, γj,· := (γj,k)k and Eγ̂j,k = γj,k with j2j ≤ n. Then

E‖γ̂j,· − γj,·‖plp . n
− p2 2j(rp+1).

Lemma 2.4. By Lemma 2.4 in [12], when h is the Meyer scaling or wavelet
function, without assuming compact support of f , we also have the same result
for p ≥ 2 and ‖f‖Lp(R) <∞ (because of f ∗ ϕ ∈ L

p
2 ).

3. Main results and proofs

Now, it’s time to present our Main results. Theorem 3.1 shows that we

can use ŝ∗p :=
− log2 ‖β̂j,·‖lp

j + 1
p −

1
2 as an estimator of s∗p. This result can be

extended to the case of by using Meyer scaling (wavelet) functions, and even
by the thresholding methods.

Theorem 3.1. Let φ, ψ come from a (r + 2)-regular MRA with compact sup-
ports, r > 0, 1 ≤ p ≤ ∞. Let Y1, Y2, . . . , Yn be a sequence of i.i.d random
variables with density f ∗ϕ (n is the size of experiment) and ϕ satisfy condition
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(C). Assume that ‖f‖L∞(R) < ∞ and f has compact support. If 0 < s∗p < r,

n ∼ 22j(2r+
1
2 ), then

lim infj→∞,j∈J
− log2 ‖β̂j,·‖lp

j
= s∗p −

1

p
+

1

2
. a.e.,

where β̂j,k := 1
n

∑n
i=1(Kjψ)j,k(Yi), β̂j,· := (β̂j,k)k and βj,· := (βj,k)k.

Proof. Let 1 ≤ p <∞, using mathematical expectation’s definition, we have

P{‖β̂j,· − βj,·‖plp > 2−jp(s−
1
p+

1
2 )} ≤

E‖β̂j,· − βj,·‖plp
2−jp(s−

1
p+

1
2 )

.

This with Lemma 2.3,

P{‖β̂j,· − βj,·‖lp > 2−j(s−
1
p+

1
2 )} ≤ Cn−

p
2 2j(rp+1)2jp(s−

1
p+

1
2 ).

Considering the choice of n,
∞∑
j=0

P{‖β̂j,· − βj,·‖lp > 2−j(s−
1
p+

1
2 )} <∞

holds for 0 < s < r. Since P{‖β̂j,· − βj,·‖lp > 2−j(s−
1
p+

1
2 )} ≥ P{|‖β̂j,·‖lp −

‖βj,·‖lp | > 2−j(s−
1
p+

1
2 )} ≥ P{‖β̂j,·‖lp > 2−j(s−

1
p+

1
2 ) + ‖βj,·‖lp}, it follows that

∞∑
j=0

P{‖β̂j,·‖lp − ‖βj,·‖lp > C2−j(s−
1
p+

1
2 )} <∞

and

(1)

∞∑
j=0

P{‖β̂j,·‖lp > 2−j(s−
1
p+

1
2 ) + ‖βj,·‖lp} <∞

for 0 < s < r. By the definition of s∗p, for each 0 < s < s∗p, there exists Ns ∈ N,

‖βj,·‖lp ≤ 2−j(s−
1
p+

1
2 ) for j ≥ Ns. Then

∑∞
j=Ns

P{‖β̂j,·‖lp ≥ 2 ·2−j(s−
1
p+

1
2 )} <

∞, which means

∞∑
j=Ns

P{
− log2 ‖β̂j,·‖lp

j
≤ s− 1

p
+

1

2
− 1

j
} <∞.

Apply Borel-Cantelli Lemma to this inequality,

− log2 ‖β̂j,·(ω)‖lp
j

> s− 1

p
+

1

2
− 1

j

for almost all ω ∈ Ω with j ≥ Ns. So

(2) lim infj→∞
− log2 ‖β̂j,·‖lp

j
≥ s− 1

p
+

1

2
a.e.

for 0 < s < s∗p.



DENSITY SMOOTHNESS PARAMETER ESTIMATION 1373

It is left to show the supreme of s is lim infj→∞
− log2 ‖β̂j,·‖lp

j + 1
p −

1
2 .

If s > s∗p, there exists a subsequence {jk}∞k=1 such that

‖βjk,·‖lp ≥ 2−jk(s−
1
p+

1
2 )

and P{‖β̂jk,·‖lp < 1
2 · 2

−jk(s− 1
p+

1
2 )} = P{‖βj,·‖lp − ‖β̂jk,·‖lp > ‖βj,·‖lp − 1

2 ·
2−jk(s−

1
p+

1
2 )} ≤ P{|‖βjk,·‖lp−‖β̂jk,·‖lp | > 1

2 ·2
−jk(s− 1

p+
1
2 )}. Applying the same

computation procedure of (1), one has
∑∞
k=1 P{‖β̂jk,·‖lp <

1
2 · 2

−jk(s− 1
p+

1
2 )} <

∞, i.e.,
∞∑
k=1

P{
− log2 ‖β̂jk,·‖lp

jk
> s− 1

p
+

1

2
+

1

jk
} <∞

for s∗p < s < r. Also by Borel-Cantelli Lemma,

(3) lim infj→∞
− log2 ‖β̂j,·‖lp

j
≤ s− 1

p
+

1

2
a.e.

for s∗p < s < r. Next, two class of spaces are defined below,

As := {ω ∈ Ω : lim infj→∞
− log2 ‖β̂j,·‖lp

j
≥ s− 1

p
+

1

2
}

and

Bs := {ω ∈ Ω : lim infj→∞
− log2 ‖β̂j,·‖lp

j
≤ s− 1

p
+

1

2
}.

Thus,

P (As) = 1 for any 0 < s < s∗p and P (Bs) = 1 for any s∗p < s < r

with the help of (2) and (3). Because

{ω ∈ Ω : lim infj→∞
− log2 ‖β̂j,·‖lp

j
= s∗p−

1

p
+

1

2
} = (

∞⋂
k=1

As∗p− 1
k

)
⋂

(

∞⋂
k=1

Bs∗p+ 1
k

).

By DeMorgan’s Law,

P{ω ∈ Ω : lim infj→∞
− log2 ‖β̂j,·‖lp

j
= s∗p −

1

p
+

1

2
}

≥ 1−
∞∑
k=1

P (ACs∗p− 1
k

)−
∞∑
k=1

P (BCs∗p+ 1
k

) = 1.

Then the result holds for 1 ≤ p <∞.

To end of the proof, we have to show the case of p =∞. Note that P{‖β̂j,·−
βj,·‖l∞ > 2−j(s+

1
2 )} ≤ P{‖β̂j,· − βj,·‖l2 > 2−j(s+

1
2 )} = P{‖β̂j,· − βj,·‖2l2 >

2−2j(s+
1
2 )} ≤ 22j(s+

1
2 )E‖β̂j,· − βj,·‖2l2 .

Then we get the result analogously and the proof is completed. �

Meanwhile, one can get a similar result by using Meyer wavelets.
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Corollary 3.1. Under the same assumptions of Theorem 3.1 except for
‖f‖Lp(R) < ∞ with p ≥ 2 (f without compact support), and φ (ψ) is Meyer
scaling (wavelet) function. Then by Lemma 2.4, we have

lim infj→∞,j∈J
− log2 ‖β̂j,·‖lp

j
= s∗p −

1

p
+

1

2
, a.e.

As an example of Theorem 3.1, we have an estimation for piecewise-smooth
function below.

Corollary 3.2. Let ψ be Daubechies wavelet, let f be a density satisfying
f ∈ Cm−1(R) (Cm(R) is the set of m-order continuous differentiable functions
with m ∈ N), f ∈ Cm+1((−∞, a]) and f ∈ Cm+1([a,+∞, )) but f (m)(a−) 6=
f (m)(a+). The other conditions are the same as Theorem 3.1, then

lim
j→∞

− log2 ‖β̂j,·‖lp
j

= m+
1

p
= s∗p −

1

p
+

1

2
, a.e.

The proof of this corollary is similar to Corollary 4.2 in [6], so we omit it
here. It should be pointed out that we replace Theorem 4.1 of [6] with Theorem
3.1 in the proof’s procedure.

Moreover, the thresholding methods can also get a good estimation.

Theorem 3.2. Let φ, ψ come from a (r+ 2)-regular MRA, r > 0, 1 ≤ p ≤ ∞.
Let Y1, Y2, . . . , Yn be a sequence of i.i.d random variables with density f ∗ ϕ
(n is the size of experiment). Assume that ‖f‖L∞(R) < ∞ and f has compact
support. If 0 < s∗p < r, then

lim infj→∞,j∈J
− log2 ‖β̃j,·‖lp

j
= s∗p −

1

p
+

1

2
, a.e.,

where β̃j,k :=

{
β̂j,k, |β̂j,·| > τj,n;

0, |β̂j,·| ≤ τj,n,
and τj,n ∼ 2jr( 1

n )
1
2 , n ∼ 22j(2r+

1
2 ).

Proof. With the help of Theorem 3.1, what we only to show is the estimation

E‖β̃j,· − βj,·‖plp . n
− p2 2j(rp+1).

By triangle inequality, E‖β̃j,· − βj,·‖plp . E‖β̂j,· − βj,·‖
p
lp

+E‖β̃j,· − β̂j,·‖plp , the

left is to show E‖β̃j,· − β̂j,·‖plp . n
− p2 2j(rp+1). In fact,

E‖β̃j,· − β̂j,·‖plp = E‖β̂j,·I{|β̂j,·| ≤ τj,n}‖plp . n
− p2 2j(rp+1)

because of the choice of τj,n, and I{S} is the classical indicator function on a
set S. It is similar when p =∞ and the result holds. �

Remark 3.1. It is easy to show

lim infj→∞,j∈J
− log2 ‖Q̂jf‖Lp

j
= s∗p, a.e.
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with Q̂jf :=
∑
k β̂j,kψj,k; Note that when using Meyer scaling and wavelet

functions, we need only assume f ∈ L∞(R) without compact support, and
then the range of p is p ≥ 2 (by Lemma 2.4 of [12]), which is the same as
Theorem 4.1 of [6].

Note that the condition 0 < s∗p < r is needed in the above two theorems.
The reason comes from the characterization result of Lemma 1.1, which plays
an important role in this paper. In some sense, we get a necessary condition
for the smoothness parameter estimation of density function.

Besides, the proof of Theorem 3.1 is very similar to Theorem 4.1 in [6]. But
the range of p in our result is larger because of the help of Lemma 2.3. And our
density function is covered by additive noises ϕ, i.e., random variable sequence
(X1, X2, . . . , Xn) is replaced by (Y1, Y2, . . . , Yn). So we also have a different
choice of size experiment n. Of course, in order to prove Theorem 3.2 more
succinctly, we give a detailed proof for Theorem 3.1.
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