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BIHARMONIC SPACELIKE CURVES IN LORENTZIAN

HEISENBERG SPACE

Ji-Eun Lee

Abstract. In this paper, we show that proper biharmonic spacelike

curve γ in Lorentzian Heisenberg space (H3, g) is pseudo-helix with
κ2 − τ2 = −1 + 4η(B)2. Moreover, γ has the spacelike normal vector

field and is a slant curve. Finally, we find the parametric equations of
them.

1. Introduction

J. Eells and J. H. Sampson ([6]) defined harmonic and biharmonic map
between Riemannian manifolds. G. Y. Jiang ([9] and [10]) derived the first
variation formula of the bienergy from the Euler-Lagrange equation. Harmonic
maps are clearly biharmonic. Non-harmonic biharmonic maps are called proper
biharmonic maps. B. Y. Chen and S. Ishikawa [3] showed nonexistence of
proper biharmonic curves in Euclidean 3-space E3. Moreover they classified
all proper biharmonic curves in Minkowski 3-space E3

1 (See [8]). Recently,
T. Sasahara ([12]) introduced biharmonic maps between pseudo-Riemannian
manifolds and studied proper biharmonic submanifolds in Lorentzian 3-space
forms.

A contact manifold (M,η) is a smooth manifold M2n+1 together with a
global differential one-form η such that η ∧ (dη)n 6= 0 everywhere on M . In [2]
G. Calvaruso found relationship between Riemannian and Lorentzian metrics
associated to the same contact structure. Given contact structure (M2n+1, η),
there is a one-to-one correspondence between the two associated structure by
the relation

g = g̃ − 2η ⊗ η,
where g and g̃ are the Lorentzian and Riemannian metric. (M2n+1, η, ξ, ϕ, g)
is a contact Lorentzian manifold with ξ timelike, and the structure is Sasakian
if and only if the corresponding Riemannian structure is Sasakian.
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As a generalization of Legendre curve, the notion of slant curves was intro-
duced in [4]. A curve in a contact 3-manifold is said to be slant if its tangent
vector field has constant angle with the Reeb vector field. In [5], we found that
biharmonic curves in 3-dimensional Sasakian space forms are slant helices.

In this paper, we study biharmonic curves in 3-dimensional Lorentzian
Heisenberg space (H3, g). In Section 3 we show that proper biharmonic space-
like curve γ in Lorentzian Heisenberg space (H3, g) is pseudo-helix with
κ2 − τ2 = −1 + 4η(B)2. Moreover, γ has the spacelike normal vector field
and is a slant curve. Finally, we find the parametric equations of them.

2. Preliminaries

2.1. Contact Lorentzian manifold

Let M be a (2n+ 1)-dimensional differentiable manifold. M has an almost
contact structure (ϕ, ξ, η) if it admits a (1, 1)-tensor field ϕ, a vector field ξ and
a 1-form η satisfying

(1) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

Suppose M has an almost contact structure (ϕ, ξ, η). Then ϕξ = 0 and
η ◦ ϕ = 0. Moreover, the endomorphism ϕ has rank 2n.

If a (2n+ 1)-dimensional smooth manifold M with almost contact structure
(ϕ, ξ, η) admits a compatible Lorentzian metric such that

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ),

then we say M has an almost contact Lorentzian structure (η, ξ, ϕ, g). Setting
Y = ξ we have

η(X) = −g(X, ξ).

Next, if the compatible Lorentzian metric g satisfies

dη(X,Y ) = g(X,ϕY ),

then η is a contact form on M , ξ the associated Reeb vector field, g an associ-
ated metric and (M,ϕ, ξ, η, g) is called a contact Lorentzian manifold.

For a contact Lorentzian manifold M , one may define naturally an almost
complex structure J on M × R by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

where X is a vector field tangent to M , t the coordinate of R and f a function
on M × R. If the almost complex structure J is integrable, then the contact
Lorentzian manifold M is said to be normal or Sasakian. It is known that a
contact Lorentzian manifold M is normal if and only if M satisfies

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ.
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Proposition 2.1 ([2]). An almost contact Lorentzian manifold (M2n+1, η, ξ,
ϕ, g) is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ + η(Y )X.

Using the similar arguments and computations in [1] we obtain:

Proposition 2.2 ([2]). Let (M2n+1, η, ξ, ϕ, g) be a contact Lorentzian mani-
fold. Then

∇Xξ = ϕX − ϕhX, h =
1

2
Lξϕ.

If ξ is a killing vector field with respect to the Lorentzian metric g, then we
have

∇Xξ = ϕX.

2.2. Frenet-Serret equations

Let γ : I → M3 be a unit speed curve in Lorentzian 3-manifolds M3 such
that γ′ satisfies g(γ′, γ′) = ε1 = ±1. The constant ε1 is called the causal
character of γ. A unit speed curve γ is said to be a spacelike or timelike if its
causal character is 1 or −1, respectively. A unit speed curve γ is said to be a
Frenet curve if g(γ′′, γ′′) 6= 0. A Frenet curve γ admits a orthonormal frame
field {T = γ′, N,B} along γ. Then the Frenet-Serret equations are following
([7], [8]):

(2)

 ∇γ
′T = ε2κN,

∇γ′N = −ε1κT + ε3τB,
∇γ′B = −ε2τN,

where κ = |∇γ′γ′| is the geodesic curvature of γ and τ its geodesic torsion.
The vector fields T , N and B are called tangent vector field, principal normal
vector field, and binormal vector field of γ, respectively.

The constant ε2 and ε3 defined by g(N,N) = ε2 and g(B,B) = ε3, and
called second causal character and third causal character of γ, respectively.
Thus it satisfied ε1ε2 = −ε3.

A Frenet curve γ is a geodesic if and only if κ = 0. A Frenet curve γ with
constant geodesic curvature and zero geodesic torsion is called a pseudo-circle.
A pseudo-helix is a Frenet curve γ whose geodesic curvature and torsion are
constants.

Proposition 2.3. Let {T,N,B} are orthonomal Frame field in a Lorentzian
3-manifold. Then

T ∧L N = ε3B, N ∧L B = ε1T, B ∧L T = ε2N.
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2.3. Biharmonic curve

The harmonic maps φ : (Mm, g)→ (Nn, h) between two pseudo-Riemannian
manifolds as critical points of the energy E(φ) =

∫
M
|dφ|2dv. The tension field

τφ is defined by

τφ = trace∇φdφ = Σmi=1εi(∇φeidφ(ei)− dφ(∇eiei)),

where ∇φ and {ei} denote the induced connection by φ on the bundle φ∗TNn.
A smooth map φ is called a harmonic map if its tension field vanishes.

Next, the bienergy E2(φ) of a map φ is defined by E2(φ) =
∫
M
|τφ|2dv,

and say that φ is biharmonic if it is a critical point of the bienergy. Harmonic
maps are clearly biharmonic. Non-harmonic biharmonic maps are called proper
biharmonic maps. We define the bitension field τ2(φ) by

τ2(φ) := Σmi=1εi((∇φei∇
φ
ei −∇

φ
∇ei

ei
)τφ −RN (τφ, dφ(ei))dφ(ei)),

where RN is the curvature tensor of Nn and defined by RN (X,Y ) = ∇[X,Y ] −
[∇X ,∇Y ] (see [12]).

We now restrict our attention to isometric immersions γ : I → (M, g) from
an interval I to a pseudo-Riemannian manifold. The image C = γ(I) is the
trace of a curve in M and γ is a parametrization of C by arc length. In this case
the tension field becomes τγ = ε1∇γ′γ′ and the biharmonic equation reduces
to

(3) τ2(γ) = ε1(∇2
γ′τγ −R(τγ , γ

′)γ′) = 0.

Note that C = γ(I) is part of a geodesic of M if and only if γ is harmonic.
Moreover, from the biharmonic equation if γ is harmonic, thus geodesics are a
subclass of biharmonic curves.

For a n-dimensional Lorentzian space forms of constant curvature k by
Mn

1 (k). The curvature tensor R of Mn
1 (k) is given by

R(X,Y )Z = k(g(Z,X)Y − g(Z, Y )X),

where g is the Lorentzian metric tensor of Mn
1 (k) (see [11, p. 80]). Hence we

have:

Proposition 2.4 ([12]). Let γ : I → M3
1 (k) be a Frenet curve. Then γ is

proper biharmonic if and only if γ is a helix with

k = −ε3(ε1κ
2 + ε3τ

2), κ 6= 0.

3. Biharmonic spacelike curves in (H3, g)

The Heisenberg group H3 is a Lie group which is diffeomorphic to R3 and
the group operation is defined by

(x, y, z) ∗ (x, y, z) = (x+ x, y + y, z + z +
xy

2
− xy

2
).
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The mapping

H3 →


 1 a b

0 1 c
0 0 1

 ∣∣∣∣ a, b, c ∈ R

 : (x, y, z) 7→

 1 x z + xy
2

0 1 y
0 0 1


is an isomorphism between H3 and a subgroup of GL(3,R).

Now, we take the contact form

η = dz + (ydx− xdy).

Then the characteristic vector field of η is ξ = ∂
∂z .

Now, we equip the Lorentzian metric as following:

g = dx2 + dy2 − (dz + (ydx− xdy))
2
.

We take a left-invariant Lorentzian orthonormal frame field (e1, e2, e3) on
(H3, g):

e1 =
∂

∂x
− y ∂

∂z
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
,

and the commutative relations are derived as follows:

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

Then the endomorphism field ϕ is defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

The Levi-Civita connection ∇ of (H3, g) is described as

∇e1e1 = ∇e2e2 = ∇e3e3 = 0, ∇e1e2 = e3 = −∇e2e1,(4)

∇e2e3 = −e1 = ∇e3e2, ∇e3e1 = e2 = ∇e1e3.

The contact form η satisfies dη(X,Y ) = g(X,ϕY ). Moreover the structure
(η, ξ, ϕ, g) is Sasakian. The Riemannian curvature tensor R of (H3, g) is given
by

R(e1, e2)e1 = 3e2, R(e1, e2)e2 = −3e1,

R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2,(5)

R(e3, e1)e3 = e1, R(e3, e1)e1 = e3,

the others are zero.
The sectional curvature is given by ([2])

K(ξ, ei) = −R(ξ, ei, ξ, ei) = −1 for i = 1, 2,

and

K(e1, e2) = R(e1, e2, e1, e2) = 3.

Hence Lorentzian Heisenberg space (H3, g) is the Lorentzian Sasakian space
forms with constant holomorphic sectional curvature µ = 3.

The tension field τγ = ε1∇γ′γ′ and from the Frenet-Serret equation (2),
∇γ′γ′ = 0 if and only if κ = 0, hence we have:
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Proposition 3.1. Let γ : I → (H3, g) be a Frenet curve in the Lorentzian
Heisenberg space (H3, g). Then γ is harmonic if and only if γ is a geodesic.

Next, using (2) we get

∇3
TT = 3ε3κκ

′T + ε2(κ′′ − ε2κ(ε1κ
2 + ε3τ

2))N − ε1(2κ′τ + κτ ′)B.

Let γ : I → (H3, g) be a curve parametrized by arc-length with the Frenet
frame field (T,N,B). Expand T,N,B as T = T1e1 +T2e2 +T3e3, N = N1e1 +
N2e2 +N3e3, B = B1e1 +B2e2 +B3e3 with respect to the pseudo-orthonormal
basis {e1, e2, e3 = ξ} with timelike ξ. From Proposition 2.3 we see that ε3B =
T ∧L N , that is,

(6) ε3B1 = T2N3 − T3N2, ε3B2 = T3N1 − T1N3, ε3B3 = T2N1 − T1N2.

Moreover, using the Riemannian curvature tensor (5) we have

R(κN, T )T

= κR(N1e1 +N2e2 +N3e3, T1e1 + T2e2 + T3e3)(T1e1 + T2e2 + T3e3)

= − ε2κ
[
(ε3 + 4B2

3)N − (4N3B3)B
]
.

From the biharmonic equation (3) we have

τ2(γ) = ∇3
TT − ε2R(κN, T )T

= 3ε3κκ
′T +

[
ε2(κ′′ − ε2κ(ε1κ

2 + ε3τ
2)) + κ(ε3 + 4B2

3)
]
N

+
[
− ε1(2κ′τ + κτ)′ − 4κN3B3

]
B

= 0.

Hence we have:

Proposition 3.2. Let γ : I → (H3, g) be a Frenet curve parametrized by
arc-length in the Lorentzian Heisenberg space (H3, g). Then γ is a proper bi-
harmonic curve if and only if

κ = constant 6= 0,

ε1κ
2 + ε3τ

2 = ε3 + 4η(B)2,(7)

τ ′ = −4ε1η(N)η(B).

3.1. Biharmonic spacelike curves

In this subsection, we study a spacelike curve such that biharmonic equation
(3) in Lorentzian Heisenberg space (H3, g). We fix ε1 = 1 then we have:

Corollary 3.3. Let γ : I → (H3, g) be a spacelike curve in the Lorentzian
Heisenberg space (H3, g). Then γ is proper biharmonic if and only if γ is a
pseudo-helix with

(8) κ2 + ε3τ
2 = ε3 + 4η(B)2, η(N)η(B) = 0, κ 6= 0.
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Proof. By using (4) we get first

∇TT = (T ′1 − 2T2T3)e1 + (T ′2 + 2T1T3)e2 + (T ′3)e3.

By using the 1st Frenet-Serret equation, it follows that

(9) ε2κN = (T ′1 − 2T2T3)e1 + (T ′2 + 2T1T3)e2 + (T ′3)e3.

From this, we obtain T ′3 = ε2κN3. Here we may put T3(s) = κF (s) and f(s) =

F
′
(s). Then we get N3(s) = ε2f(s). We may also write

T =
√

1 + κ2F 2 cosβ(s)e1 +
√

1 + κ2F 2 sinβ(s)e2 + κF (s)e3.

Then (9) is rewritten as

ε2κN =
{
−
(
2κF (s) + β′(s)

)√
1 + κ2F 2 sinβ(s) +

κ2Ff√
1 + κ2F 2

cosβ(s)
}
e1

+
{(

2κF (s) + β′(s)
)√

1 + κ2F 2 cosβ(s) +
κ2Ff√

1 + κ2F 2
sinβ(s)

}
e2(10)

+ κf(s)e3.

Since g(ε2κN, ε2κN) = ε2κ
2, we have

2κF + β′ = ±κ
√
ε2 + f2 + ε2κ2F 2

1 + κ2F 2
.

If we replace 2κF + β′ in (10), then we obtain

ε2N =
(
∓
√
ε2 + f2 + ε2κ2F 2

√
1 + κ2F 2

sinβ(s) +
κFf√

1 + κ2F 2
cosβ(s)

)
e1

+
(
±
√
ε2 + f2 + ε2κ2F 2

√
1 + κ2F 2

cosβ(s) +
κFf√

1 + κ2F 2
sinβ(s)

)
e2 + f(s)e3.

As ε3B = T ∧L N , we have ε3B3 = −T1N2 +N1T2 = ∓ε2
√
ε2 + f2 + ε2κ2F 2.

The second Frenet-Serret equation gives

(11) g(∇TN, e3) = g(−κT + ε3τB, e3) = κT3 − ε3τB3.

On the other hand, we have

g(∇TN, e3) = g
(
∇T (N1e1 +N2e2 +N3e3), e3

)
= g

(
(N

′

1 − T3N2 − T2N3)e1 + (N
′

2 + T3N1 + T1N3)e2

+ (N
′

3 − T2N1 + T1N2)e3, e3

)
(12)

= −N
′

3 + ε3B3.

Comparing (11) with (12), we obtain

(13) N
′

3 − ε3B3 = −κT3 + ε3τB3.
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Next, we replace N3 = ε2f, B3 = ±
√
ε2 + f2 + ε2κ2F 2 and T3 = κF in (13),

then we get

(14) τ = ±ε3ε2
f

′
+ ε2κ

2F√
ε2 + f2 + ε2κ2F 2

− 1 = ε3
B

′

3

N3
− 1.

We now assume that γ is biharmonic and suppose that τ
′

= −4B3N3 6= 0 and
by using (14),

ττ ′ = −4ε3B3B
′
3 + 4N3B3 = −4ε3B3B

′
3 − τ ′.

Hence we obtain

(15) (τ + 1)2 = −4ε3B
2
3 + a,

where a is a constant. From the second equation in (7)

(16) ε3 + 4B2
3 = κ2 + ε3τ

2.

Using (16), since κ is a constant, the equation (15) becomes

τ2 + τ = b,

where b is a constant, and hence τ is also constant, which yields a contradiction.
�

Therefore we have:

Theorem 3.4. Let γ : I → (H3, g) be a spacelike curve in the Lorentzian
Heisenberg space (H3, g). Then γ is proper biharmonic if and only if γ is a
pseudo-helix with

(17) κ2 − τ2 = −1 + 4η(B)2, η(N) = 0, η(B) = constant, κ 6= 0.

Proof. Let γ be a spacelike curve in the Lorentzian Heisenberg space (H3, g).
Then we write

T = cosβ coshαe1 + sinβ coshαe2 + sinhαe3,

where α = α(s), β = β(s). Using the Frenet-Serret equation (2) and (4), we
get

ε2κN = (α′ cosβ sinhα− sinβ coshα(β′ + 2 sinhα))e1

+ (α′ sinβ sinhα+ cosβ coshα(β′ + 2 sinhα))e2

+ (α′ coshα)e3.

Next, we compute

ε3B3 = −T1N2 + T2N1 = −ε2
κ

(β′ + 2 sinhα) cosh2 α.

We suppose that B3 = 0 then since cosh2 α is non-zero, we have to β′ +
2 sinhα = 0. Without loss of generality we assume that κ =| ∇TT |L= α′ > 0
then we have

N = − cosβ sinhαe1 − sinβ sinhαe2 − coshαe3.
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This normal vector field is timelike. Moreover, the binormal vector field is
spacelike as

B = − sinβe1 + cosβe2.

Differentiating of N along γ, we get

∇TN = − (α′ cosβ coshα− sinβ)e1

− (α′ sinβ coshα+ cosβ)e2 − (α′ sinhα)e3.

Using the second Frenet-Serret equation, since ε3 = g(B,B) = 1, we have

τ = ε3τ = g(∇TN,B) = −1.

Hence from (8), κ = 0 and γ is not proper biharmonic. �

3.2. Slant curves

A one-dimensional integral submanifold of D in 3-dimensional contact man-
ifold is called a Legendre curve, especially to avoid confusion with an integral
curve of the vector field ξ. As a generalization of Legendre curve, the notion of
slant curves was introduced in [4] for a contact Riemannian 3-manifold, that is,
a curve in a contact 3-manifold is said to be slant if its tangent vector field has
constant angle with the Reeb vector field. The contact angle θ(s) is a function
defined by cos θ(s) = g(γ′(s), ξ).

Similarly as in the contact Riemnnian 3-manifolds, a curve in a contact
Lorentzian 3-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field (i.e., g(γ′, ξ) is a constant). In particular, if
g(γ′, ξ) = 0, then γ is a Legendre curve.

Let γ be a non-geodesic spacelike curve in a Sasakian Lorentzian 3-manifold
M3. Differentiating g(γ′, ξ) = − sinhα, then

−ε2κη(N) = g(∇γ′γ′, ξ) + g(γ′,∇γ′ξ) = −α′ coshα.

This equation implies:

Proposition 3.5. A non-geodesic spacelike curve γ in a Sasakian Lorentzian
3-manifold M3 is a slant curve if and only if η(N) = 0.

From Theorem 3.4 and Proposition 3.5, if γ is a spacelike proper biharmonic
curve in Lorentzian Heisenberg space (H3, g), then γ has a spacelike normal
vector field and is a slant pseudo-helix.

Let γ be a spacelike slant curve in Lorentzian Heisenberg group (H3, g).
Then the tangent vector field has the form

(18) T = γ′ = cosβ coshα0e1 + sinβ coshα0e2 + sinhα0e3, β = β(s).

Using (4) we get

∇γ′T = coshα0(β′ + 2 sinhα0)(− sinβe1 + cosβe2).

Using the Frenet-Serret equation (2), we have the curvature

κ = coshα0(β′ + 2 sinhα0).
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Since γ is a non-geodesic, we may assume that κ = coshα0(β′ + 2 sinhα0) > 0
without loss of generality. Then the normal vector field

N = − sinβe1 + cosβe2.

Using Proposition 2.3, the binormal vector field

B = −T ∧L N
= −(cosβ coshα0e1 + sinβ coshα0e2 + sinhα0e3) ∧L (− sinβe1 + cosβe2)

= cosβ sinhα0e1 + sinβ sinhα0e2 + coshα0e3.

Differentiation the normal vector field N

∇γ′N = ∇γ′(− sinβe1 + cosβe2)

= −(β′ + sinhα0)(cosβe1 + sinβe2) + coshα0e3,

and using the Frenet-Serret equation (2), we have

τ = −1− sinhα0(β′ + 2 sinhα0).

Therefore we get:

Lemma 3.6. Let γ be a spacelike slant curve in Lorentzian Heisenberg group
(H3, g) parametrized by arc-length. Then γ admits a pseudo-orthonormal frame
field {T,N,B} with timelike B along γ and

(19)
κ = coshα0(β′ + 2 sinhα0),

τ = −1− sinhα0(β′ + 2 sinhα0).

Thus we have:

Corollary 3.7. Let γ be a Legendre curve in Lorentzian Heisenberg group
(H3, g) parametrized by arc-length. Then γ admits a pseudo-orthonormal frame
field {γ′, ϕγ′, ξ} with timelike ξ along γ and τ = −1.

Using the equation (17) and (19) we have:

Proposition 3.8. Let γ : I → (H3, g) be a spacelike curve parametrized by
arc-length in the Lorentzian Heisenberg group (H3, g). Then γ satisfies proper
biharmonic if and only if γ is a slant pseudo-helix with

(20) β′(s) = − sinhα0 ±
√
−1 + 5 cosh2 α0.

Let γ(s) = (x(s), y(s), z(s)) be a curve in (H3, g). Then the tangent vector
field T of γ is

T =

(
dx

ds
,
dy

ds
,
dz

ds

)
=
dx

ds

∂

∂x
+
dy

ds

∂

∂y
+
dz

ds

∂

∂z
.

Using the relations:

∂

∂x
= e1 + ye3,

∂

∂y
= e2 − xe3,

∂

∂z
= e3.
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If γ is a spacelike slant curve with spacelike normal vector field in (H3, g),
then from (18) the system of differential equations for γ are given by

dx

ds
(s) = coshα0 cosβ(s),(21)

dy

ds
(s) = coshα0 sinβ(s),(22)

dz

ds
(s) = sinhα0 + coshα0(x(s) sinβ(s)− y(s) cosβ(s)).

Then (20) is reduced to

β′(s) = − sinhα0 ±
√
−1 + 5 cosh2 α0 = constant.

Namely, β′ is a constant, say A, hence β(s) = As+ b, b ∈ R. Thus, from (21)
and (22) we have the following result:

Theorem 3.9. Let γ : I → (H3, g) be a spacelike curve parametrized by arc-
length s in the Lorentzian Heisenberg group (H3, g). If γ satisfies proper bihar-
monic equation, then the parametric equations of γ are given by

x(s) = 1
A coshα0 sin(As+ b) + x0,

y(s) = − 1
A coshα0 cos(As+ b) + y0,

z(s) = {sinhα0+cosh2 α0/(A)}s− coshα0

A {x0 cos(As+b) + y0 sin(As+b)}
+z0,

where b, x0, y0, z0 are constants.

In particular, using (19) and (20) for a Legendre curve γ we get κ = β′ =
2 = A.

We assume that Riemannian metric g̃ is defined by

g̃ = dx2 + dy2 + (dz + (ydx− xdy))
2

in the Heisenberg group H3, then we get:

Remark 3.10 ([5]). Every proper biharmonic helix in Heisenberg spaces (H3, g̃)
is represented as

x(s) = 1
A sinα0 sin(As+ b) + x0,

y(s) = − 1
A sinα0 cos(As+ b) + y0,

z(s) = {cosα0 + sin2 α0/(A)}s− sinα0

A {x0 cos(As+ b) + y0 sin(As+ b)}
+z0,

for a constant contact angle α0, where b, x0, y0, z0 are constants.
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