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BIHARMONIC SPACELIKE CURVES IN LORENTZIAN
HEISENBERG SPACE

JI-EUN LEE

ABSTRACT. In this paper, we show that proper biharmonic spacelike
curve v in Lorentzian Heisenberg space (Hs,g) is pseudo-helix with

k2 — 72 = —1 + 4n(B)2. Moreover, v has the spacelike normal vector
field and is a slant curve. Finally, we find the parametric equations of
them.

1. Introduction

J. Eells and J. H. Sampson ([6]) defined harmonic and biharmonic map
between Riemannian manifolds. G. Y. Jiang ([9] and [10]) derived the first
variation formula of the bienergy from the Euler-Lagrange equation. Harmonic
maps are clearly biharmonic. Non-harmonic biharmonic maps are called proper
biharmonic maps. B. Y. Chen and S. Ishikawa [3] showed nonexistence of
proper biharmonic curves in Euclidean 3-space E3. Moreover they classified
all proper biharmonic curves in Minkowski 3-space E} (See [8]). Recently,
T. Sasahara ([12]) introduced biharmonic maps between pseudo-Riemannian
manifolds and studied proper biharmonic submanifolds in Lorentzian 3-space
forms.

A contact manifold (M,n) is a smooth manifold M?"*! together with a
global differential one-form 7 such that n A (dn)™ # 0 everywhere on M. In [2]
G. Calvaruso found relationship between Riemannian and Lorentzian metrics
associated to the same contact structure. Given contact structure (M?"+1 n),
there is a one-to-one correspondence between the two associated structure by
the relation

g=g—2nxmn,
where g and g are the Lorentzian and Riemannian metric. (M2 0. & ¢, g)

is a contact Lorentzian manifold with £ timelike, and the structure is Sasakian
if and only if the corresponding Riemannian structure is Sasakian.
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As a generalization of Legendre curve, the notion of slant curves was intro-
duced in [4]. A curve in a contact 3-manifold is said to be slant if its tangent
vector field has constant angle with the Reeb vector field. In [5], we found that
biharmonic curves in 3-dimensional Sasakian space forms are slant helices.

In this paper, we study biharmonic curves in 3-dimensional Lorentzian
Heisenberg space (Hs, g). In Section 3 we show that proper biharmonic space-
like curve 7 in Lorentzian Heisenberg space (Hs,g) is pseudo-helix with
k? — 72 = —1 + 4n(B)2. Moreover, v has the spacelike normal vector field
and is a slant curve. Finally, we find the parametric equations of them.

2. Preliminaries
2.1. Contact Lorentzian manifold

Let M be a (2n 4 1)-dimensional differentiable manifold. M has an almost
contact structure (¢, £, n) if it admits a (1, 1)-tensor field ¢, a vector field £ and
a 1-form 7 satisfying

(1) ¢ =-I+n@¢ nE) =1

Suppose M has an almost contact structure (¢,&,n). Then @€ = 0 and
n o @ = 0. Moreover, the endomorphism ¢ has rank 2n.

If a (2n + 1)-dimensional smooth manifold M with almost contact structure
(¢,&,m) admits a compatible Lorentzian metric such that

9(0 X, 9Y) = g(X,Y) + n(X)n(Y),
then we say M has an almost contact Lorentzian structure (n, &, ¢, g). Setting
Y = £ we have
n(X) = —g(X,§).
Next, if the compatible Lorentzian metric g satisfies
dn(X,Y) = g(X, ¢Y),

then 7 is a contact form on M, ¢ the associated Reeb vector field, g an associ-
ated metric and (M, p,&,7,g) is called a contact Lorentzian manifold.
For a contact Lorentzian manifold M, one may define naturally an almost
complex structure J on M x R by
d

T £5) = (X = 6 (X)),

where X is a vector field tangent to M, ¢ the coordinate of R and f a function
on M x R. If the almost complex structure J is integrable, then the contact
Lorentzian manifold M is said to be normal or Sasakian. It is known that a
contact Lorentzian manifold M is normal if and only if M satisfies

[0, ] +2dn ® € =0,
where [p, ¢] is the Nijenhuis torsion of .



BIHARMONIC SPACELIKE CURVES IN LORENTZIAN HEISENBERG SPACE 1311

Proposition 2.1 ([2]). An almost contact Lorentzian manifold (M*"1 n, &,
©,9) is Sasakian if and only if

(Vxe)Y =g(X,Y)E+n(Y)X.
Using the similar arguments and computations in [1] we obtain:

Proposition 2.2 ([2]). Let (M?" T n,& 0, 9) be a contact Lorentzian mani-
fold. Then

1
Vxé=pX —phX, h= ngcp.

If € is a killing vector field with respect to the Lorentzian metric g, then we
have

Vx§=pX.

2.2. Frenet-Serret equations

Let v : I — M3 be a unit speed curve in Lorentzian 3-manifolds M?3 such
that +' satisfies g(7',7") = e1 = £1. The constant &; is called the causal
character of . A unit speed curve + is said to be a spacelike or timelike if its
causal character is 1 or —1, respectively. A unit speed curve ~ is said to be a
Frenet curve if g(v"”,7") # 0. A Frenet curve v admits a orthonormal frame
field {T' = 4/, N, B} along . Then the Frenet-Serret equations are following

([71, [8)):

VT = LR
(2) VyN =—eikT +e37B,
V,Y/B = —82TN,
where k = |V.,/7'| is the geodesic curvature of v and 7 its geodesic torsion.

The vector fields T, N and B are called tangent vector field, principal normal
vector field, and binormal vector field of v, respectively.

The constant €9 and e3 defined by g(N,N) = €3 and g(B, B) = e3, and
called second causal character and third causal character of =y, respectively.
Thus it satisfied 169 = —e3.

A Frenet curve v is a geodesic if and only if k = 0. A Frenet curve v with
constant geodesic curvature and zero geodesic torsion is called a pseudo-circle.
A pseudo-heliz is a Frenet curve v whose geodesic curvature and torsion are
constants.

Proposition 2.3. Let {T, N, B} are orthonomal Frame field in a Lorentzian
3-manifold. Then

TALN=e3sB, NApB=e&T, BApT=c¢eN.
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2.3. Biharmonic curve

The harmonic maps ¢ : (M™, g) — (N™, h) between two pseudo-Riemannian
manifolds as critical points of the energy E(¢) = [,, |[dp|*dv. The tension field
Ty is defined by

T = traceV?de = X" 1,(VE do(e;) — dp(Ve,e;)),

where V? and {e;} denote the induced connection by ¢ on the bundle ¢*TN™.
A smooth map ¢ is called a harmonic map if its tension field vanishes.

Next, the bienergy Es(¢) of a map ¢ is defined by Ea(¢) = [, |74]*dv,
and say that ¢ is biharmonic if it is a critical point of the bienergy. Harmonic
maps are clearly biharmonic. Non-harmonic biharmonic maps are called proper
biharmonic maps. We define the bitension field 75($) by

To(9) = Sy (VEVE = Vg, )7e — RN (1, do(e:))d(e),

where R is the curvature tensor of N™ and defined by RV (X,Y) = V|x y] —
[Vx,Vy] (see [12]).

We now restrict our attention to isometric immersions v : I — (M, g) from
an interval I to a pseudo-Riemannian manifold. The image C = ~(I) is the
trace of a curve in M and 7 is a parametrization of C' by arc length. In this case
the tension field becomes 7, = €1V, and the biharmonic equation reduces
to

(3) 7(7) = e1(V3my — R(75,7')7') = 0.

Note that C' = y(I) is part of a geodesic of M if and only if + is harmonic.
Moreover, from the biharmonic equation if « is harmonic, thus geodesics are a
subclass of biharmonic curves.

For a m-dimensional Lorentzian space forms of constant curvature k by
M7 (k). The curvature tensor R of M{'(k) is given by

R(va)Z - k(g(ZaX)Y - g(Z7 Y)X)a

where g is the Lorentzian metric tensor of M7 (k) (see [11, p. 80]). Hence we
have:

Proposition 2.4 ([12]). Let v : I — M;(k) be a Frenet curve. Then 7y is
proper biharmonic if and only if v is a helix with

k:*€3(5152+€37'2), H#O

3. Biharmonic spacelike curves in (Hj, g)

The Heisenberg group Hj is a Lie group which is diffeomorphic to R? and
the group operation is defined by
Ty T
(2.9,2) % @F,%) = @+ Ty + T2+ 7+ L — ).
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The mapping

1 a b 1z z+4%
Hy — 01 ¢ a,byceR 3 : (z,y,2)—~ | 0 1 Yy
0 0 1 0 O 1

is an isomorphism between Hjs and a subgroup of GL(3,R).
Now, we take the contact form

n =dz + (ydr — xzdy).
Then the characteristic vector field of n is £ = %.
Now, we equip the Lorentzian metric as following;:
g = da? + dy? — (dz + (ydz — zdy))* .

We take a left-invariant Lorentzian orthonormal frame field (eq,ez,e3) on

(H3ag):
o9 9, 0, 0
- Ox yaz’eQ_ay o2 T oy

and the commutative relations are derived as follows:

€1

le1, ea] = 2es, [ea,e3] = [e3,e1] = 0.

Then the endomorphism field ¢ is defined by

ey = ez, peg = —e1, pez = 0.
The Levi-Civita connection V of (Hs, g) is described as
(4) Velel = V62€2 = ve3e3 =0, v6162 = €3 = 7v6261,
Ve2€3 = —€1 = ve?’eg, Vesel = €y = v6163.

The contact form 7 satisfies dn(X,Y) = g(X, ¢Y). Moreover the structure
(n,€,¢,g) is Sasakian. The Riemannian curvature tensor R of (Hs, g) is given
by

R(e1,ez)er = 3ea, R(e1,e2)es = —3ey,
(5) R(€2,63)62 = —e€g, R(62, 63)6’3 = —eq,
R(es,e1)es = e, R(es,e1)er = e,

the others are zero.
The sectional curvature is given by ([2])

K(&,e)) = —R(& e;,&,e;) =—1 fori=1,2,
and
K(ey,e2) = R(eq,ea,e1,6€2) = 3.
Hence Lorentzian Heisenberg space (Hg, g) is the Lorentzian Sasakian space
forms with constant holomorphic sectional curvature p = 3.

The tension field 7, = €1V, and from the Frenet-Serret equation (2),
V4" =0 if and only if x = 0, hence we have:
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Proposition 3.1. Let v : I — (Hs,g) be a Frenet curve in the Lorentzian
Heisenberg space (Hs, g). Then v is harmonic if and only if v is a geodesic.

Next, using (2) we get

VAT = 3e3kk'T + e2(k" — eak(e1x? + e37%))N — 1(26'1 + k7')B.

Let v : I — (Hs,g) be a curve parametrized by arc-length with the Frenet
frame field (T, N, B). Expand T, N, B as T' = Tye; + Tzea + Tzes, N = Nie; +
Nyeo + Nses, B = Biei + Bses + Bses with respect to the pseudo-orthonormal

basis {e1, €2, e5 = £} with timelike £. From Proposition 2.3 we see that e3B =
T Ar, N, that is,

(6) e3By =TuN3 —T3N3,e3B2 = T5N; — T1 N3, e3B3 = To Ny — 11 Ns.
Moreover, using the Riemannian curvature tensor (5) we have
R(kN,T)T
= kR(Nie1 + Naeg + Nses, Trer + Toeo + Tses)(Ther + Toheo + Tses)
= —eak[(e3 +4B3)N — (4N3Bs)B].
From the biharmonic equation (3) we have
m9(y) = V37T — eoR(kN, T)T
= 3e3kk'T + [e2(k” — ear(e1k” + £377)) + k(g3 + 4B3)|N
+ [ = e1(2k'T + k7))’ — 4kN3 B3] B
= 0.
Hence we have:

Proposition 3.2. Let v : I — (Hs,g) be a Frenet curve parametrized by
arc-length in the Lorentzian Heisenberg space (Hs,g). Then v is a proper bi-
harmonic curve if and only if

K = constant # 0,
(7) e1k% 4 e37% = 3 + 4n(B)?,
7' = —dein(N)n(B).

3.1. Biharmonic spacelike curves

In this subsection, we study a spacelike curve such that biharmonic equation
(3) in Lorentzian Heisenberg space (Hs, g). We fix €; = 1 then we have:

Corollary 3.3. Let v : I — (Hs,g) be a spacelike curve in the Lorentzian
Heisenberg space (Hs,g). Then v is proper biharmonic if and only if v is a
pseudo-heliz with

(8) K2+ ezt =e3+4n(B)?, n(N)n(B) =0, & #0.
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Proof. By using (4) we get first

VT = (T] — 2T5T3)er + (T + 211 T3)es + (T5)es.
By using the 1st Frenet-Serret equation, it follows that
9) eakN = (T} — 2T5T3)er + (Ty + 2T1T5)es + (T4)es.

From this, we obtain T4 = e2xN3. Here we may put T5(s) = kF(s) and f(s) =
F'(s). Then we get N3(s) = e2f(s). We may also write

T=+vV1+k2F?cosf(s)er + vV 1+ k2F2sin f(s)es + kF(s)es.

Then (9) is rewritten as

2
F
gokN = { — (26F(s) + B'(s)) V1 + k2F?sin B(s) + \/% cos B(s)}el
K2Ff .
(10) + {(QHF(S) + B'(s)) V1 + k2F2 cos B(s) + i sin B(s)}eg
+ kf(s)es.
Since g(eakN,e9kN) = e9K2, we have
Vea + f2+ R F?
2kF + B =%k T
If we replace 2kF + 8’ in (10), then we obtain
€9+ f2+e9K2F2 | kFf
eaN = ($ v et sin B(s) + WCOSB(S))Q
€9+ f2 + eoK2F? KkF )
+ (:I: v 2\/11171;2‘2 COSB(S)-F\/H%Slnﬁ(s))ez—‘rf(s)eg.

As 533 =T AL N, we have 63B3 = —T1N2 + N1T2 = 31362\/62 + f2 + EQH2F2.
The second Frenet-Serret equation gives

(11) g(VrN,es) = g(—kT + e37B, e3) = k15 — €37 Bs3.
On the other hand, we have
9(VrN,e3) = Q(VT(Nlel + Noea + N3€3),€3)
= 9((N£ — TyNy — TyN3)ey + (Ny + TNy + Ty N3)es
(12) + (N} = TyNy + Ty Np)es, e3)
= — N;+e3Bs.
Comparing (11) with (12), we obtain

’

(13) N3 5333 = *HTg + 537'33.
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Next, we replace N3 = eof, By = i\/sg + f2 4+ e9k2F? and T3 = «F in (13),
then we get

’ 2F B/
(14) T = tezeq f +ean —1l=e3=—2 —1.
Ve + f2 +eak2F? N3

We now assume that - is biharmonic and suppose that 7 = —4B5N; # 0 and
by using (14),

77" = —4e3B3 B3 + 4N3Bs = —4e3 B3 By — 7.

Hence we obtain

(15) (14 1)? = —4e3B2 + a,
where a is a constant. From the second equation in (7)
(16) €3 +4B2 = K% 4 e37%.

Using (16), since & is a constant, the equation (15) becomes
™ 471 =0,

where b is a constant, and hence 7 is also constant, which yields a contradiction.
O

Therefore we have:

Theorem 3.4. Let v : I — (Hs,g) be a spacelike curve in the Lorentzian
Heisenberg space (Hs,g). Then v is proper biharmonic if and only if v is a
pseudo-helixz with

(17) k2 — 72 = —14+49(B)?, n(N)=0, n(B)= constant, r # 0.

Proof. Let v be a spacelike curve in the Lorentzian Heisenberg space (Hs, g).
Then we write

T = cos B cosh aey + sin B cosh aes + sinh aes,

where o = «(s), 8 = S(s). Using the Frenet-Serret equation (2) and (4), we
get

gakN = (a/ cos Bsinh a — sin S cosh (8" + 2sinh ) )eq
+ (o' sin Bsinh a + cos B cosh (B’ + 2sinh «))ea
+ (o’ cosh a)es.
Next, we compute

e3Bs = —T1No+ToN; = —%(ﬂ' + 2sinh «) cosh? a.

We suppose that Bs = 0 then since cosh?a is non-zero, we have to ' +
2sinh o = 0. Without loss of generality we assume that x =| Vo1 |p=a' >0
then we have

N = — cos fsinh ae; — sin 8 sinh ey — cosh aes.
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This normal vector field is timelike. Moreover, the binormal vector field is
spacelike as
B = —sin fe; + cos Pes.
Differentiating of N along =y, we get
VN = — (& cos Bcosha — sin B)e;
— (o’ sin Bcosh a + cos B)ea — (o’ sinh a)es.
Using the second Frenet-Serret equation, since e3 = g(B, B) = 1, we have
T=¢e37 =g(VrN,B) = —1.
Hence from (8), x = 0 and + is not proper biharmonic. O

3.2. Slant curves

A one-dimensional integral submanifold of D in 3-dimensional contact man-
ifold is called a Legendre curve, especially to avoid confusion with an integral
curve of the vector field £. As a generalization of Legendre curve, the notion of
slant curves was introduced in [4] for a contact Riemannian 3-manifold, that is,
a curve in a contact 3-manifold is said to be slant if its tangent vector field has
constant angle with the Reeb vector field. The contact angle 0(s) is a function
defined by cos8(s) = g(v'(s),€).

Similarly as in the contact Riemnnian 3-manifolds, a curve in a contact
Lorentzian 3-manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field (i.e., g(7/,€) is a constant). In particular, if
g(7',€) =0, then ~v is a Legendre curve.

Let v be a non-geodesic spacelike curve in a Sasakian Lorentzian 3-manifold
M?3. Differentiating g(v/, &) = — sinh «, then

—e2kn(N) = g(Vyy',€) + 9(7', V§) = —a/ cosha.
This equation implies:

Proposition 3.5. A non-geodesic spacelike curve v in a Sasakian Lorentzian
3-manifold M? is a slant curve if and only if n(N) = 0.

From Theorem 3.4 and Proposition 3.5, if v is a spacelike proper biharmonic
curve in Lorentzian Heisenberg space (Hs,g), then 4 has a spacelike normal
vector field and is a slant pseudo-helix.

Let v be a spacelike slant curve in Lorentzian Heisenberg group (Hs, g).
Then the tangent vector field has the form

(18) T =+' = cosBcoshage; + sin Bcosh ages + sinh ages, B = B(s).
Using (4) we get
VT = cosh o (8" + 2sinh ap) (— sin Bey + cos fez).
Using the Frenet-Serret equation (2), we have the curvature

k = cosh ag(B’ + 2sinh o).
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Since v is a non-geodesic, we may assume that k = cosh ag(8’ 4+ 2sinh ag) > 0
without loss of generality. Then the normal vector field
N = —sin ey + cos Ses.
Using Proposition 2.3, the binormal vector field
B=-TAL N

= —(cos B cosh apey + sin S cosh apes + sinh apes) Ap (—sin Seg + cos fes)

= cos @ sinh age; + sin B sinh ages + cosh apes.
Differentiation the normal vector field N

V4N = V. (—sin fe; + cos fez)
= — (B’ + sinh ag)(cos Be; + sin Bes) + cosh ages,
and using the Frenet-Serret equation (2), we have
7= —1—sinh ap(B + 2sinhayp).

Therefore we get:

Lemma 3.6. Let v be a spacelike slant curve in Lorentzian Heisenberg group

(Hs, g) parametrized by arc-length. Then v admits a pseudo-orthonormal frame
field {T, N, B} with timelike B along v and

k = cosh ap(f" + 2sinh ayp),

19
( ) T = _1—sinha0(ﬁ/—|—QSiHha0)-

Thus we have:

Corollary 3.7. Let v be a Legendre curve in Lorentzian Heisenberg group
(Hs, g) parametrized by arc-length. Then v admits a pseudo-orthonormal frame
field {v', o', &} with timelike £ along v and 7 = —1.

Using the equation (17) and (19) we have:

Proposition 3.8. Let v : I — (Hs,g) be a spacelike curve parametrized by
arc-length in the Lorentzian Heisenberg group (Hs, g). Then v satisfies proper
biharmonic if and only if v is a slant pseudo-helix with

(20) §(s) = — sinh.ag & y/—1 + 5 cosh? a.

Let v(s) = (x(s),y(s),2(s)) be a curve in (Hs,g). Then the tangent vector
field T of ~ is

_(dw dy dz)_dsca dy 0  dz 0

ds’ds’ds)  dsdx ' dsdy ' ds 0z

Using the relations:

0 n 0
~ —e e il
o 1 yes, 9z

= €2 — T€3, = €3.

9
dy
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If v is a spacelike slant curve with spacelike normal vector field in (Hs, g),
then from (18) the system of differential equations for v are given by

(21) Z—i(s) = cosh ag cos 3(s),
(22) % (s) = cosh g sin (),
dz

E(s) = sinh ag + cosh ag(x(s) sin 5(s) — y(s) cos B(s)).
Then (20) is reduced to

B'(s) = —sinh ag £ \/ —1 + 5 cosh? oy = constant.

Namely, 8’ is a constant, say A, hence 8(s) = As+b, b € R. Thus, from (21)
and (22) we have the following result:

Theorem 3.9. Let v : I — (Hs, g) be a spacelike curve parametrized by arc-
length s in the Lorentzian Heisenberg group (Hs, g). If v satisfies proper bihar-
monic equation, then the parametric equations of v are given by

z(s) = 4 cosh ag sin(As + b) + o,
y(s) = —= cosh ag cos(As + b) + yo,
2(s) = {sinh ap+cosh® ag/(A)}s — oshan {45 cos(As+b) + yo sin(As+b)}
+20,
where b, xg, Yo, 20 are constants.

In particular, using (19) and (20) for a Legendre curve v we get k = 8/ =
2=A.

We assume that Riemannian metric g is defined by
g = da® + dy? + (dz + (ydz — zdy))®
in the Heisenberg group Hj, then we get:

Remark 3.10 ([5]). Every proper biharmonic helix in Heisenberg spaces (Hs, §)
is represented as
z(s) = 4 sinag sin(A4s + b) + o,
y(s) = —% sinag cos(As + b) + Yo,
2(s) = {cos ap + sin® ag /(A) }s — 220 {2 cos(As + b) + yo sin(As + b)}
+20,

for a constant contact angle a, where b, xg, Yo, zg are constants.
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