FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASS OF MEROMORPHIC BI-UNIVALENT FUNCTIONS

Ahmad Motamednezhad and Safa Salehian

Abstract. In this paper, we obtain the coefficient bounds for subclass of meromorphic bi-univalent functions by using the Faber polynomial expansions. The results presented in this paper would generalize and improve some recent works.

1. Introduction

Let Σ denote the class of meromorphic univalent functions f of the form

$$
\begin{equation*}
f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} \tag{1.1}
\end{equation*}
$$

defined on the domain $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$. Since $f \in \Sigma$ is univalent, it has an inverse f^{-1}, that satisfy

$$
f^{-1}(f(z))=z(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w(M<|w|<\infty, M>0) .
$$

A simple calculation shows that the function $g:=f^{-1}$ is given by

$$
\begin{align*}
g(w) & =w+B_{0}+\sum_{n=1}^{\infty} \frac{B_{n}}{w^{n}} \tag{1.2}\\
& =w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{1}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots .
\end{align*}
$$

A function $f \in \Sigma$ is said to be meromorphic bi-univalent in Δ if both f and f^{-1} are univalent in Δ. The family of all meromorphic bi-univalent functions is denoted by $\Sigma_{\mathfrak{B}}$. Estimates on the coefficient of meromorphic univalent functions were widely investigated in the literature; for example, Schiffer [15]

Received September 21, 2017; Revised January 5, 2018; Accepted February 6, 2018.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
Key words and phrases. meromorphic univalent functions, meromorphic bi-univalent functions, Faber polynomial, coefficient estimates.
obtained the estimate $\left|b_{2}\right| \leq 2 / 3$ for meromorphic univalent functions $f \in \Sigma$ with $b_{0}=0$ and Duren [6] proved that $\left|b_{n}\right| \leq 2 /(n+1)$ for $f \in \Sigma$ with $b_{k}=0$, $1 \leq k \leq n / 2$.

For the coefficients of inverses of meromorphic univalent functions, Springer [17] proved that

$$
\left|B_{3}\right| \leq 1 \quad \text { and } \quad\left|B_{3}+\frac{1}{2} B_{1}^{2}\right| \leq \frac{1}{2}
$$

and conjectured that

$$
\left|B_{2 n-1}\right| \leq \frac{(2 n-2)!}{n!(n-1)!}(n=1,2, \ldots)
$$

In 1977, Kubota [12] proved that the Springer conjecture is true for $n=3,4,5$ and subsequently Schober [16] obtained a sharp bounds for the coefficients $B_{2 n-1}, 1 \leq n \leq 7$.

Several researchers (for example see $[4,5,8-11,19]$) introduced and investigated new subclasses of meromorphically bi-univalent functions.

Recently, T. Panigrahi [13] introduced the following subclass $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$ of meromorphic bi-univalent function and obtained non sharp estimates on the initial coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ for functions in this subclass. In this paper, we use the Faber polynomial expansion [7] to obtain not only improvement of estimates of coefficients $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ which obtained by Panigrahi [13], but also we find estimates of coefficients $\left|b_{n}\right|$ where $n \geq 3$.

Definition 1.1 ([13, Definition 3.1]). A function $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1.1) is said to be in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$, if the following conditions are satisfied:

$$
\operatorname{Re}\left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\beta(0 \leq \beta<1, \lambda \geq 1, z \in \Delta)
$$

and

$$
\operatorname{Re}\left\{\lambda \frac{w g^{\prime}(w)}{g(w)}+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right\}>\beta(0 \leq \beta<1, \lambda \geq 1, w \in \Delta)
$$

where the function g is the inverse of f given by (1.2).
Theorem 1.2 ([13, Thoerem 3.2]). Let $f(z)$ given by (1.1) be in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq \frac{2(1-\beta)}{\lambda} \\
\left|b_{1}\right| \leq \frac{(1-\beta)}{2 \lambda-1} \sqrt{1+\frac{4(1-\beta)^{2}}{\lambda^{2}}}
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq \frac{2(1-\beta)}{3(3 \lambda-2)}\left[1+\frac{4(1-\beta)^{2}}{\lambda^{2}}\right]
$$

2. Preliminary results

In the present paper by using the Faber polynomial expansions we obtain estimates of coefficients $\left|a_{n}\right|$ where $n \geq 3$, of functions in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$. The Faber polynomials introduced by Faber [7] play an important role in various areas of mathematical sciences, especially in geometric function theory. Several authors worked on using Faber polynomial expansions to find coefficient estimates for classes bi-univalent functions, see for example $[3,5,8-11,18]$. For this purpose we need the following lemmas.
Lemma 2.1 ([1, 2]). Let $f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}$ be meromorphic univalent function in $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$. Then we can write,

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+\sum_{k=1}^{\infty} F_{k}\left(b_{0}, b_{1}, \ldots, b_{k-1}\right) \frac{1}{z^{k}} \tag{2.1}
\end{equation*}
$$

where $F_{k}\left(b_{0}, b_{1}, \ldots, b_{k-1}\right)$ is a Faber polynomial of degree k,

$$
F_{k}\left(b_{0}, b_{2}, \ldots, b_{k-1}\right)=\sum_{i_{1}+2 i_{2}+\cdots+k i_{k}=k} A_{\left(i_{1}, i_{2}, \ldots, i_{k}\right)} b_{0}^{i_{1}} b_{1}^{i_{1}} \cdots b_{k-1}^{i_{k}}
$$

and

$$
A_{\left(i_{1}, i_{2}, \ldots, i_{k}\right)}:=(-1)^{k+2 i_{1}+3 i_{2}+\cdots+(k+1) i_{k}} \frac{\left(i_{1}+i_{2}+\cdots+i_{k}-1\right)!k}{i_{1}!i_{2}!\cdots i_{k}!}
$$

The first Faber polynomials $F_{k}\left(b_{0}, b_{1}, \ldots, b_{k}\right)$ are given by:

$$
F_{1}\left(b_{0}\right)=-b_{0}, F_{2}\left(b_{0}, b_{1}\right)=b_{0}^{2}-2 b_{1} \quad \text { and } \quad F_{3}\left(b_{0}, b_{1}, b_{2}\right)=-b_{0}^{3}+3 b_{0} b_{1}-3 b_{2}
$$

Lemma 2.2 ([3, page 52]). Let $f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}$ be meromorphic bi-univalent in $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$. Then the coefficients of function $g:=f^{-1}$ are given

$$
\begin{equation*}
g(w)=w+B_{0}+\sum_{n=1}^{\infty} \frac{B_{n}}{w^{n}}=w-b_{0}-\sum_{n=1}^{\infty} \frac{1}{n} K_{n+1}^{n} \frac{1}{w^{n}} ; M<|w|<\infty \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{n+1}^{n}= & n b_{0}^{n-1} b_{1}+n(n-1) b_{0}^{n-2} b_{2}+\frac{1}{2} n(n-1)(n-2) b_{0}^{n-3}\left(b_{3}+b_{1}^{2}\right) \\
& +\frac{n(n-1)(n-2)(n-3)}{3!} b_{0}^{n-4}\left(b_{4}+3 b_{1} b_{2}\right)+\sum_{j \geq 5} b_{0}^{n-j} V_{j}
\end{aligned}
$$

and V_{j} with $5 \leq j \leq n$ is a homogeneous polynomial of degree j in the variables $b_{1}, b_{2}, \ldots, b_{n}$. In particular $K_{2}^{1}=b_{1}, \frac{1}{2} K_{3}^{2}=b_{0} b_{1}+b_{2}$ and $\frac{1}{3} K_{4}^{3}=b_{0}^{2} b_{1}+$ $2 b_{0} b_{1}+b_{3}+b_{1}^{2}$.

By applying Lemma 2.1 for a function $\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ we can obtain the following lemma.

Lemma 2.3. Let $f(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}$ be a meromorphic univalent function in $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$. Then we can write,

$$
\begin{aligned}
& \lambda\left(\frac{z f^{\prime}(z)}{f(z)}\right)+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \\
= & \lambda\left(\frac{z f^{\prime}(z)}{f(z)}\right)+(1-\lambda)\left(\frac{z\left(z f^{\prime}(z)\right)^{\prime}}{z f^{\prime}(z)}\right) \\
= & \lambda\left[1+\sum_{n=1}^{\infty} F_{n}\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \frac{1}{z^{n}}\right] \\
& +(1-\lambda)\left[1+\sum_{n=1}^{\infty} F_{n}\left(0,-b_{1}, \ldots,-(n-1) b_{n-1}\right) \frac{1}{z^{n}}\right] \\
= & 1+\sum_{n=0}^{\infty}\left[\lambda F_{n+1}\left(b_{0}, b_{1}, \ldots, b_{n}\right)+(1-\lambda) F_{n+1}\left(0,-b_{1}, \ldots,-n b_{n}\right)\right] \frac{1}{z^{n+1}} .
\end{aligned}
$$

Lemma 2.4 ([14]). If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all functions h analytic in $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$ for which $\operatorname{Re}(h(z))>0$ where $h(z)=1+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\frac{c_{3}}{z^{3}}+\cdots$.

3. Coefficient estimates

Theorem 3.1. Let $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1.1) be in the class $\mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)(\lambda \geq$ $1,0 \leq \beta<1$). If $b_{1}=b_{2}=\cdots=b_{n-1}=0$ for n being odd or if $b_{0}=b_{1}=$ $\cdots=b_{n-1}=0$ for n being even, then

$$
\begin{equation*}
\left|b_{n}\right| \leq \frac{2(1-\beta)}{(n+1)((n+1) \lambda-n)}, n \geq 1 \tag{3.1}
\end{equation*}
$$

Proof. For meromorphic bi-univalent function f of the form (1.1) by applying Lemma 2.3, we have:

$$
\begin{align*}
& \lambda\left(\frac{z f^{\prime}(z)}{f(z)}\right)+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \\
= & 1+\sum_{n=0}^{\infty}\left[\left(\lambda F_{n+1}\left(b_{0}, \ldots, b_{n}\right)+(1-\lambda) F_{n+1}\left(0,-b_{1}, \ldots,-n b_{n}\right)\right] \frac{1}{z^{n+1}}\right. \tag{3.2}
\end{align*}
$$

and again by applying Lemma 2.3 for its inverse map $g=f^{-1}$, we have:

$$
\begin{align*}
& \lambda\left(\frac{w g^{\prime}(w)}{g(w)}\right)+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \\
= & 1+\sum_{n=0}^{\infty}\left[\lambda F_{n+1}\left(B_{0}, \ldots, B_{n}\right)+(1-\lambda) F_{n+1}\left(0,-B_{1}, \ldots,-n B_{n}\right)\right] \frac{1}{w^{n+1}} . \tag{3.3}
\end{align*}
$$

Since $f \in \mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$, by definition, there exist two positive real-part functions $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{-n}$ and $q(w)=1+\sum_{n=1}^{\infty} d_{n} w^{-n}$, where $\operatorname{Re}\{p(z)\}>0$ and
$\operatorname{Re}\{q(w)\}>0$ in Δ so that:

$$
\begin{align*}
& \lambda\left(\frac{z f^{\prime}(z)}{f(z)}\right)+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \\
= & 1+(1-\beta) \sum_{n=0}^{\infty} K_{n+1}^{1}\left(c_{1}, c_{2}, \ldots, c_{n+1}\right) \frac{1}{z^{n+1}} \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& \lambda\left(\frac{w g^{\prime}(w)}{g(w)}\right)+(1-\lambda)\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right) \\
= & 1+(1-\beta) \sum_{n=0}^{\infty} K_{n+1}^{1}\left(d_{1}, d_{2}, \ldots, d_{n+1}\right) \frac{1}{w^{n+1}} . \tag{3.5}
\end{align*}
$$

By equating the corresponding coefficients of (3.2) and (3.4), we have:

$$
\begin{align*}
& \lambda F_{n+1}\left(b_{0}, b_{1}, \ldots, b_{n}\right)+(1-\lambda) F_{n+1}\left(0,-b_{1}, \ldots,-n b_{n}\right) \\
= & (1-\beta) K_{n+1}^{1}\left(c_{1}, c_{2}, \ldots, c_{n+1}\right) \tag{3.6}
\end{align*}
$$

and, similarly, from (3.3) and (3.5), we obtain:

$$
\begin{align*}
& \lambda F_{n+1}\left(B_{0}, B_{1}, \ldots, B_{n}\right)+(1-\lambda) F_{n+1}\left(0,-B_{1}, \ldots,-n B_{n}\right) \\
= & (1-\beta) K_{n+1}^{1}\left(d_{1}, d_{2}, \ldots, d_{n+1}\right) . \tag{3.7}
\end{align*}
$$

Note that for $b_{k}=0 ; 1 \leq k \leq n-1$, we have $B_{0}=-b_{0}, B_{n}=-b_{n}$, then

$$
\begin{equation*}
F_{n+1}\left(b_{0}, 0, \ldots, 0, b_{n}\right)=(-1)^{n+1} b_{0}^{n+1}-(n+1) b_{n} . \tag{3.8}
\end{equation*}
$$

Hence, when n is odd, by using equation (3.8) and $B_{0}=-b_{0}, B_{n}=-b_{n}$, the equalities (3.6) and (3.7) can be written as follow:

$$
\begin{aligned}
& \lambda b_{0}^{n+1}+(n+1)[n-\lambda(n+1)] b_{n}=(1-\beta) c_{n+1}, \\
& \lambda b_{0}^{n+1}-(n+1)[n-\lambda(n+1)] b_{n}=(1-\beta) d_{n+1} .
\end{aligned}
$$

Subtract two above equation, we have

$$
2(n+1)[n-\lambda(n+1)] b_{n}=(1-\beta)\left(c_{n+1}-d_{n+1}\right)
$$

Now using Lemma 2.4, we immediately have:

$$
\left|b_{n}\right|=\frac{(1-\beta)\left|c_{n+1}-d_{n+1}\right|}{2(n+1)((n+1) \lambda-n)} \leq \frac{2(1-\beta)}{(n+1)((n+1) \lambda-n)} .
$$

When n is even, if ($b_{0}=\cdots=b_{n-1}=0$) again using equation (3.8), the equalities (3.6) and (3.7) can be written as a follow:

$$
\begin{aligned}
& (n+1)[n-\lambda(n+1)] b_{n}=(1-\beta) c_{n+1}, \\
& -(n+1)[n-\lambda(n+1)] b_{n}=(1-\beta) d_{n+1} .
\end{aligned}
$$

Now getting the absolute values of either of the above two equalities and using Lemma 2.4, we obtain:

$$
\left|b_{n}\right|=\frac{(1-\beta)\left|c_{n+1}\right|}{(n+1)((n+1) \lambda-n)} \leq \frac{2(1-\beta)}{(n+1)((n+1) \lambda-n)}
$$

This evidently completes the proof of Theorem 3.1.
Theorem 3.2. Let $f(z) \in \mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta, \lambda)$, where $(\lambda \geq 1,0 \leq \beta<1)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq\left\{\begin{array}{l}
\sqrt{\frac{2(1-\beta)}{\lambda}} ; \lambda+2 \beta \leq 2 \\
\frac{2(1-\beta)}{\lambda} ; \lambda+2 \beta \geq 2
\end{array}\right. \\
\left|b_{1}\right| \leq \frac{1-\beta}{|2 \lambda-1|}
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq\left\{\begin{array}{l}
\frac{2(1-\beta)}{3(1 \lambda-2)}\left[1+\sqrt{\frac{2(1-\beta)}{\lambda}}\right] ; \lambda+2 \beta \leq 2 \\
\frac{2(1-\beta)}{3(3 \lambda-2)}\left[1+\frac{4(1-\beta)^{2}}{\lambda^{2}}\right] ; \lambda+2 \beta \geq 2
\end{array}\right.
$$

Proof. Comparing corresponding coefficients of (3.2) and (3.4) for $n=0,1,2$, we obtain:

$$
\begin{equation*}
-\lambda b_{0}=(1-\beta) c_{1} \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\lambda b_{0}^{2}+2(1-2 \lambda) b_{1}=(1-\beta) c_{2} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
-\lambda b_{0}^{3}+3 \lambda b_{0} b_{1}+3(2-3 \lambda) b_{2}=(1-\beta) c_{3} \tag{3.11}
\end{equation*}
$$

Getting the absolute values of (3.9) and using Lemma 2.4, we have:

$$
\begin{equation*}
\left|b_{0}\right| \leq \frac{2(1-\beta)}{\lambda} \tag{3.12}
\end{equation*}
$$

Similarly, comparing corresponding coefficients of (3.3) and (3.5) for $n=1$, we obtain

$$
\begin{equation*}
\lambda b_{0}^{2}-2(1-2 \lambda) b_{1}=(1-\beta) d_{2} \tag{3.13}
\end{equation*}
$$

Adding (3.10) and (3.13) yields:

$$
2 \lambda b_{0}^{2}=(1-\beta)\left(c_{2}+d_{2}\right)
$$

Getting the absolute values of the above equality and using Lemma 2.4, we get:

$$
\begin{equation*}
\left|b_{0}\right|=\sqrt{\frac{(1-\beta)\left|c_{2}+d_{2}\right|}{2 \lambda}} \leq \sqrt{\frac{2(1-\beta)}{\lambda}} \tag{3.14}
\end{equation*}
$$

From (3.12) and (3.14), we obtain the first part of theorem.

To show the second part of the theorem, subtracting (3.13) from (3.10) we obtain:

$$
4(1-2 \lambda) b_{1}=(1-\beta)\left(c_{2}-d_{2}\right)
$$

Getting the absolute values of the above equality and using Lemma 2.4, we get:

$$
\left|b_{1}\right|=\frac{(1-\beta)\left|c_{2}-d_{2}\right|}{4|1-2 \lambda|} \leq \frac{1-\beta}{|2 \lambda-1|}
$$

Finally, to determine the bound on $\left|b_{2}\right|$, comparing corresponding coefficients of (3.3) and (3.5) for $n=2$, we have

$$
\begin{equation*}
\lambda b_{0}^{3}-6(1-2 \lambda) b_{0} b_{1}-3(2-3 \lambda) b_{2}=(1-\beta) d_{3} \tag{3.15}
\end{equation*}
$$

Similarly, consider the sum of (3.11) and (3.15), we have

$$
\begin{equation*}
3(5 \lambda-2) b_{0} b_{1}=(1-\beta)\left(c_{3}+d_{3}\right) \tag{3.16}
\end{equation*}
$$

Subtracting (3.15) from (3.11) and using (3.16), we obtain

$$
\begin{equation*}
6(2-3 \lambda) b_{2}=(1-\beta)\left(c_{3}-d_{3}\right)-\frac{2-3 \lambda}{5 \lambda-2}(1-\beta)\left(c_{3}+d_{3}\right)+2 \lambda b_{0}^{3} \tag{3.17}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
6(2-3 \lambda) b_{2}=\frac{8 \lambda-4}{5 \lambda-2}(1-\beta) c_{3}-\frac{2 \lambda}{5 \lambda-2}(1-\beta) d_{3}+2 \lambda b_{0}{ }^{3} \tag{3.18}
\end{equation*}
$$

By using Lemma 2.4 and (3.12), (3.14) we have the result.

4. Corollaries and consequences

Remark 4.1. Trivially the estimates of $\left|b_{0}\right|,\left|b_{1}\right|$ and $\left|b_{2}\right|$ which obtained in Theorem 3.2 are better than the corresponding estimates in Theorem 1.2.

By putting $\lambda=1$ in Theorem 3.1 and Theorem 3.2, we conclude the following results.
Corollary 4.2. Let $f(z) \in \mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta)(0 \leq \beta<1)$. If $b_{1}=b_{2}=\cdots=b_{n-1}=0$ for n being odd or if $b_{0}=b_{1}=\cdots=b_{n-1}=0$ for n being even, then

$$
\left|b_{n}\right| \leq \frac{2(1-\beta)}{n+1}
$$

Corollary 4.3. Let $f(z) \in \mathcal{T}_{\Sigma_{\mathfrak{B}}}(\beta)(0 \leq \beta<1)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq\left\{\begin{array}{l}
\sqrt{2(1-\beta)} ; 0 \leq \beta \leq \frac{1}{2} \\
2(1-\beta) ; \quad \frac{1}{2} \leq \beta<1
\end{array}\right. \\
\left|b_{1}\right| \leq 1-\beta
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq\left\{\begin{array}{l}
\frac{2(1-\beta)}{3}[1+\sqrt{2(1-\beta)}] ; \quad 0 \leq \beta \leq \frac{1}{2} \\
\frac{2(1-\beta)}{3}\left[1+4(1-\beta)^{2}\right] ; \quad \frac{1}{2} \leq \beta<1
\end{array}\right.
$$

Remark 4.4. The estimates of $\left|b_{0}\right|$ and $\left|b_{1}\right|$ which obtained in Corollary 4.3 are better than the corresponding estimates in [10, Theorem 2].
Acknowledgment. The authors wish to sincerely thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), no. 3, 179-222.
[2] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), no. 5, 343-367.
[3] A. Bouali, Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, Bull. Sci. Math. 130 (2006), no. 1, 49-70.
[4] S. Bulut, Coefficient estimates for new subclasses of meromorphic bi-univalent functions, Int. Scholarly Research Notices 2014 (2014), Article ID 376076, 5 pages.
[5] S. Bulut, N. Magesh, and V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 2, 113-116.
[6] P. L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169-172.
[7] G. Faber, Über polynomische Entwickelungen, Math. Ann. 57 (1903), no. 3, 389-408.
[8] S. A. Halim, S. G. Hamidi, V. Ravichandran, and J. M. Jahangiri, Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 277-282.
[9] S. G. Hamidi, S. A. Halim, and J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 351 (2013), no. 9-10, 349-352.
[10] , Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. 2013 (2013), Art. ID 498159, 4 pp.
[11] T. Janani and G. Murugusundaramoorthy, Coefficient estimates of meromorphic bistarlike functions of complex order, Internat. J. Anal. Appl. 4 (2014), no. 1, 68-77,
[12] Y. Kubota, Coefficients of meromorphic univalent functions, Kōdai Math. Sem. Rep. 28 (1976/77), no. 2-3, 253-261.
[13] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and bi-univalent functions, Bull. Korean Math. Soc. 50 (2013), no. 5, 1531-1538.
[14] C. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[15] M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
[16] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 111-116.
[17] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421-450.
[18] P. G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), no. 1, 268-276.
[19] H.-G. Xiao and Q.-H. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat 29 (2015), no. 7, 1601-1612.

Ahmad Motamednezhad
Faculty of Mathematical Sciences
Shahrood University of Technology
P.O.Box 316-36155, Shahrood, Iran

Email address: a.motamedne@gmail.com

Safa Salehian

Faculty of Mathematical Sciences
Shahrood University of Technology
P.O.Box 316-36155, Shahrood, Iran

Email address: salehian_gilan86@yahoo.com

